Math, asked by Akashmourya9, 5 months ago

I need full explanation for the above question spamming will not be tolerated btw t thanks in advance :)​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

we have,

 \lim _{x \rarr \frac{\pi}{2} } \frac{(1 -  \sin(x) )(8 {x}^{3}  -  {\pi}^{3}) \cos(x)  }{(\pi - 2x)^{4} }  \\

 \lim _{x \rarr \frac{\pi}{2} } \frac{(1 -  \sin(x))(2x - \pi)(4 {x}^{2} +  {\pi}^{2}   + 2\pi x) \cos(x)  }{(2x - \pi)^{4} }  \\

 \lim _{x \rarr \frac{\pi}{2} } \frac{(1 -   \sin(x))(4 {x}^{2} + 2\pi x +  {\pi}^{2} ) \cos(x)    }{(2x - \pi)^{3} }  \\

Let x - π/2 = y

=> 2x - π = 2y

 \lim _{y \rarr0 } \frac{(1 -  \sin( \frac{\pi}{2}  + y) )(4(y +  \frac{\pi}{2} )^{2} +  {\pi}^{2} + 2\pi(y +  \frac{\pi}{2}  )) \cos(y +  \frac{\pi}{2} )  }{ {y}^{3} }  \\

 \lim _{y \rarr 0 } \frac{(1 -  \cos(y)) (4(y +  \frac{\pi}{2})^{2} +  {\pi}^{2}   + 2\pi(y +  \frac{\pi}{2}  ) (-  \sin(y) )}{y^{3} }  \\

  - \lim _{y \rarr0 } \frac{2 \sin^{2} ( \frac{y}{2} )(4(y +  \frac{\pi}{2}  )^{2}  +  {\pi}^{2} + 2\pi(y +  \frac{\pi}{2})) \sin(y)   }{ {y}^{2} .y}  \\

 -  \lim _{y \rarr0 }  \frac{ \sin^{2} ( \frac{y}{2} ) (4(y +  \frac{\pi}{2})^{2}  +  {\pi}^{2}  + 2\pi(y +  \frac{\pi}{2} )) \sin(y)  }{y ^{2} .y} \\

 -  \lim _{y \rarr0 } \frac{ \sin^{2} ( \frac{y}{2} ) }{ {2( \frac{y}{2} )}^{2} }  \times   \lim _{y \rarr0 }(4(y +  \frac{\pi}{2} )^{2} +  {\pi}^{2}  + 2\pi(y +  \frac{\pi}{2} ))  \times  \lim _{y \rarr0 }   \frac{ \sin(y) }{y}  \\

 =  -  \frac{1}{2}  \times ( {\pi}^{2}  +  {\pi}^{2}  +  {\pi}^{2} ) \times 1

 =  -  \frac{3 {\pi}^{2} }{2}

Similar questions