I need help and I need it by today I will reward you
Attachments:
Answers
Answered by
4
in ∆tqr
<t+<q+<r=180°
90+40+x=180°
130+x=180°
x=180°-130°
x=50°
let the cross section point be o
in∆top
<p+<t+<o=180°
30+90+<o=180°
120+<o=180°
<o=180°-120°
<o=60°
in ∆qos
<q+<o+<s=180°
40+60+y=180°
100+y=180°
y=180°-100°
y=80°
x=50° and y=80°
<t+<q+<r=180°
90+40+x=180°
130+x=180°
x=180°-130°
x=50°
let the cross section point be o
in∆top
<p+<t+<o=180°
30+90+<o=180°
120+<o=180°
<o=180°-120°
<o=60°
in ∆qos
<q+<o+<s=180°
40+60+y=180°
100+y=180°
y=180°-100°
y=80°
x=50° and y=80°
jayak47:
kya cool hai
Answered by
1
in tringle qtr
<q+<t+<r[x]=180 <sum property
40+90+x=180
130+x=180
x=180-130 x=50deg
now in triangle pqs and triangle psr
<spq=<spr
qo=ot
ps=ps
therefore triangles are s≅ by s a s
qs=sr by [cpct]
qr is a stright line
which is equal to 180
therefore
<y=90
hence showed
Similar questions