Math, asked by hhhh3364, 1 year ago

I need help
if x = 1-√2, then find the value of x³+1/x³

Answers

Answered by BEJOICE
0

x = 1 -  \sqrt{2}  \\  \frac{1}{x}  =  \frac{1}{1   -   \sqrt{2} }  =  \frac{1  +   \sqrt{2} }{(1 -  \sqrt{2} )(1  +   \sqrt{2} )}  \\  =  \frac{1  +   \sqrt{2} }{1 - 2}  =  - 1 -  \sqrt{2}  \\ therefore \:  \: \\  x +  \frac{1}{x}  = (1 -  \sqrt{2} ) + ( - 1 -  \sqrt{2} ) =  - 2 \sqrt{2}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  =  {(x +  \frac{1}{x} )}^{3}  - 3(x +  \frac{1}{x} ) \\  =  {( - 2 \sqrt{2} )}^{3}  - 3 \times  - 2 \sqrt{2}  \\  =  - 16 \sqrt{2}  + 6 \sqrt{2}   = - 10 \sqrt{2}
Similar questions