Math, asked by yashusunita94, 3 months ago

i)Prove that sq.root 7 + sq.root2 is an irrational number.
 \sqrt{7}  +  \sqrt{2}

Answers

Answered by Anonymous
19

Answer~

To prove:- √7 + √2 is an irrational number.

________________

➭Let us first consider √2 + √7 is a rational number.

 \longrightarrow \bold{ \sqrt{2} +  \sqrt{7}  =  \frac{a}{b}   } \red \rightarrow \: eq.1

  \longrightarrow \bold{ \sqrt{2} =  \frac{a}{b}  -  \sqrt{7} } \red \rightarrow \: eq.2

➦ Now square eq.2

 \longrightarrow \bold{( \sqrt{2})^2  = ( \frac{a}{b} -  \sqrt{7})^2  }

 \longrightarrow \bold{2 =  \frac{a^2}{b^2} + 7 - \frac{2 \sqrt{7}a }{b}  }

 \longrightarrow \bold{ \frac{2 \sqrt{7a} }{b}  =  \frac{a^2}{b^2}  + 5}

 \longrightarrow \bold { \sqrt{7} =  \frac{a^2 + 5b^2}{2ab}  }

 \longrightarrow \bold \green{So  \: here  \sqrt{7} \:  is \: irrational \: and \:  \frac{a^2 + 5b^2}{2ab}is \: rational }

_____________________

➦ From these we can conclude that our contradiction is wrong as rational number cant be equal to irrational number.

So √2+√7 is irrational number.

Answered by Anonymous
107

{\huge{\red{αղsωєя-:}}}

To prove:- √7 + √2 is an irrational number.

________________

➭Let us first consider √2 + √7 is a rational number.

\implies \bold{ \sqrt{2} + \sqrt{7} = \frac{a}{b} } \red \rightarrow \: eq.1

\implies \bold{ \sqrt{2} = \frac{a}{b} - \sqrt{7} } \red \rightarrow \: eq.2

➦ Now square eq.2

\implies \bold{( \sqrt{2})^2 = ( \frac{a}{b} - \sqrt{7})^2 }

\implies \bold{2 = \frac{a^2}{b^2} + 7 - \frac{2 \sqrt{7}a }{b} }

\implies \bold{ \frac{2 \sqrt{7a} }{b} = \frac{a^2}{b^2} + 5}

\implies \bold { \sqrt{7} = \frac{a^2 + 5b^2}{2ab} }

\bold \pink{So \: here \sqrt{7} \: is \: irrational \: and \: \frac{a^2 + 5b^2}{2ab}is \: rational }

Similar questions