Math, asked by mohdasim777777777, 10 months ago

If 4Sin A - 3 Cos A=0 find the valu of 3 Sin A - 4 Cos A

Answers

Answered by Anonymous
31

{\huge{\red{\sf{Given}}}}\begin{cases}\leadsto \bf{4sinA -3cosA=0}\\\leadsto\bf{3sinA-4cosA=? }\end{cases}

{\huge{\red{\sf{To\:Find}}}}\begin{cases}\leadsto \bf{Value\:of\:3sinA-4cosA}\end{cases}

\huge\red{\underline{\bf{\green{Answer}}}}

\sf{\red{\hookrightarrow Taking\: the\:first\:given\:equ^{n}}}

\sf{\implies 4sinA - 3 cosA=0}

\sf{\implies 4sinA=3cosA}

\sf{\implies \dfrac{sinA}{cosA}=\dfrac{3}{4}}

\sf{\purple{\longmapsto tanA=\dfrac{3}{4}}}

\rule{200}1

\bf{\pink{\hookrightarrow For\: figure\:refer\:to\: attachment.}}

\sf{\pink{In \:right\:\triangle ABC}}

\sf{\mapsto AC^{2}=BC^{2}+AB^{2}}

\sf{\mapsto AC^{2}=(3x)^{2}+(4x)^{2}}

\sf{\mapsto AC^{2}=9x^{2}+16x^{2}}

\sf{\mapsto AC^{2}=25x^{2}}

\sf{\pink{\leadsto AC=5x}}

\rule{200}3

\sf{\purple{sinA=\dfrac{perpendicular}{hypotenuse}=\dfrac{3x}{5x}=\frac{3}{5}}}

\sf{\blue{cosA=\dfrac{base}{hypotenuse}=\dfrac{4x}{5x}=\frac{4}{5}}}

{\underline{\sf{\red{Now,}}}}

\bf{\green{\leadsto 3sinA-4cosA}}

\sf{\implies 3sinA-4cosA=3\times\dfrac{3}{5}-4\times\dfrac{4}{5}}

\sf{\implies 3sinA-4cosA=\dfrac{9}{5}-\dfrac{16}{5}}

\sf{\implies 3sinA-4cosA =\dfrac{-16+9}{5}}

{\underline{\orange{\boxed{\bf{\longmapsto 3sinA-4cosA=\dfrac{-7}{5}}}}}}

\underline{\sf{\pink{\therefore The\: required\: answer\:is\:3sinA-4cosA=\dfrac{-7}{5}}}}

Attachments:
Answered by Anonymous
3

hope it helps .............

Attachments:
Similar questions