(i) sin 80° - sin 20° = cos 110° + cos 10° prove that
Answers
Answered by
2
Answer:
in80∘−sin20∘=3sin50∘
Hence proved
Step-by-step explanation:
To prove: \sin80^\circ-\cos110^\circ=\sqrt{3}\sin50^\circsin80∘−cos110∘=3sin50∘
Proof:
Taking left side
\Rightarrow \sin80^\circ-\cos110^\circ⇒sin80∘−cos110∘
\Rightarrow \sin80^\circ-\cos(90^\circ+20^\circ)⇒sin80∘−cos(90∘+20∘) \cos(90+\theta)=-\sin\thetacos(90+θ)=−sinθ
\Rightarrow \sin80^\circ+\sin20^\circ⇒sin80∘+sin20∘ \sin A+\sin B=2\sin(\frac{A+B}{2})\cos(\frac{A-B}{2})sinA+sinB=2sin(2A+B)cos(2A−B)
\Rightarrow 2\sin(\frac{80^\circ+20^\circ}{2})\cos(\frac{80^\circ-20}{2})⇒2sin(280∘+20∘)cos(280∘−20)
\Rightarrow 2\sin50^\circ\cos30^\circ⇒2sin50∘cos30∘
\Rightarrow 2\sin50^\circ\cdot \dfrac{\sqrt{3}}{2}⇒2sin50∘⋅23
\Rightarrow \sqrt{3}\sin50^\circ⇒3sin50∘
LHS = RHS
Hence proved
Similar questions