Math, asked by DangerBoi, 9 months ago

i) The argument of i^17 is ?

ii) The solution set of the inequality 2/x-3 < 0 is ?

iii) If SinΦ + CosΦ = 1 then the value of Sin2Φ is ?​

Answers

Answered by abhi569
45

Step-by-step explanation:

i)

= > i^17 = > ( i^16 )i = > ( 1 )i = > i

= > 0 + 1i

Since the given point lies on y axis, thus argument of this number is π / 2.

ii)

= > 2 / ( x - 3 ) < 0

= > ( x - 3 )^2 × ( 2 ) / ( x - 3 ) < 0

= > 2x - 6 < 0

= > x < 3

Solution set is { ...- 1 , 0 , 1 , 2 } { x Z }

iii)

= > sinA + cosA = 1

= > sin^2 A + cos^2 A + 2sinAcosA = 1 { sq. on both sides }

= > 1 + sin2A = 1 { sin^2 B + cos^2 B = 1 , 2sinAcosA = sin2A }

= > sin2A = 0

Answered by Anonymous
31

Step-by-step explanation:

(i) Argument of {\iota}^{17}

 { \iota}^{17}  \\  \\  =  { \iota}^{16 + 1}  \\ \\   =  { \iota}^{16}  \times  { \iota}^{1}  \\  \\  = 1 \times  \iota \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( { \iota}^{4}   = 1)\\  \\  = 0 + 1\iota

Clearly, it lies on the Y axis.

Therefore, it's argument is \dfrac{\pi}{2}

(ii) Solution set of inequality 2/(x-3) < 0

 \frac{2}{x   - 3}  &lt; 0 \\  \\  =  &gt;  \frac{ {2(x - 3)}^{2} }{x - 3}  &lt; 0 \times  {(x - 3)}^{2}  \\  \\  =  &gt; 2x - 6 &lt; 0 \\  \\  =  &gt; 2x  - 6 + 6&lt; 0 + 6 \\  \\  =  &gt; 2x &lt; 6 \\  \\  =  &gt;  \frac{2x}{2}  &lt;  \frac{6}{2}  \\  \\  =  &gt; x &lt; 3

Hence, solution set is {.....-5, -4....0,1,2}

where, x Z

(iii) Value of \sin (2\phi)

 \sin( \phi)  +  \cos( \phi)  = 1

Squarring both the sides, we get

 =  &gt;  { \sin }^{2}  \phi +  { \cos }^{2}  \phi + 2 \sin( \phi)  \cos( \phi)  = 1 \\  \\  =  &gt; 1 +  \sin(2 \phi)  = 1 \\  \\  =  &gt;  \sin(2 \phi)  = 1 - 1 \\  \\  =  &gt;  \sin(2 \phi)  = 0

Hence, \sin(2\phi)= 0

Concept Map :-

  •  { \sin}^{2}  \alpha  +  { \cos }^{2}  \alpha  = 1

  • 2 \sin( \alpha )  \cos( \alpha )  =  \sin(2 \alpha )
Similar questions