Math, asked by pandeykislay19, 1 year ago

I want full solution ...best answer will v mrked as brainliest ..... i want ans of part iii

Attachments:

Answers

Answered by Shiksha04
1
Here a = 2 + √3
Then 1/a = 2-√3

now..
(a) + (1/a) = 2+√3+2-√3
=4

Now put the formula and you will get the answer

pandeykislay19: i need full answer
Answered by atul103
21
Hello!

#ur solution:

Given that

a = 2+√3
then
 = > \frac{1}{a} = \frac{1}{2 + \sqrt{3} } \\ \\ = > now \: rationaling \\ \\ = > \frac{1}{a} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \\ = > \frac{1}{a} = 2 - \sqrt{ 3} \\ \\ = > now \\ \\ = > (a + \frac{1}{a} {)}^{3} = {a}^{3} + \frac{1}{ {a}^{3} } + 3(a + \frac{1}{a} )\\ \\ = > (2 + \sqrt{3} + 2 - \sqrt{3} {)}^{3} = {a}^{3} + \frac{1}{ {a}^{3} } + \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: + 3(2 + \sqrt{3} + 2 - \sqrt{3} ) = \\ \\ = > {4}^{3} = {a}^{3} + \frac{1}{ {a}^{3} } + 3(4) \\ \\ = > {a}^{3} + \frac{1}{ {a}^{3} } = 64 - 12 \\ \\ = > {a}^{3} + \frac{1}{ {a}^{3} } = 52 \: ans

☺:-)✌

atul103: marl as brainlist ☺✌
pandeykislay19: yes yes
atul103: thank you Pandey ji!☺:-)
Similar questions