Math, asked by ItsCrazyDaRk02, 1 day ago

I want it's full solutions


please​

Attachments:

Answers

Answered by anindyaadhikari13
11

Solution:

Given That:

→ 4 sin θ = 3

→ sin θ = 3/4

Now, we have:

= 4 sin²θ - 3 cos²θ + 2

Can be written as:

= 4 sin²θ - 3(1 - sin²θ) + 2 [As sin²θ + cos²θ = 1]

= 4 sin²θ - 3 + 3 sin²θ + 2

= 7 sin²θ - 1

= 7 × 9/16 - 1

= 63/16 - 1

= (63 - 16)/16

= 47/16

Therefore:

→ 4 sin²θ - 3 cos²θ + 2 = 47/16 (Answer)

Learn More:

1. Relationship between sides and T-Ratios.

  • sin(x) = Height/Hypotenuse
  • cos(x) = Base/Hypotenuse
  • tan(x) = Height/Base
  • cot(x) = Base/Height
  • sec(x) = Hypotenuse/Base
  • cosec(x) = Hypotenuse/Height

2. Square formulae.

  • sin²(x) + cos²(x) = 1
  • cosec²(x) - cot²(x) = 1
  • sec²(x) - tan²(x) = 1

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x)
  • cos(x) = 1/sec(x)
  • tan(x) = 1/cot(x)

4. Cofunction identities.

  • sin(90° - x) = cos(x)
  • cos(90° - x) = sin(x)
  • cosec(90° - x) = sec(x)
  • sec(90° - x) = cosec(x)
  • tan(90° - x) = cot(x)
  • cot(90° - x) = tan(x)

5. Even odd identities.

  • sin(-x) = -sin(x)
  • cos(-x) = cos(x)
  • tan(-x) = -tan(x)
Similar questions