I want it's full solutions
please
Attachments:
Answers
Answered by
11
Solution:
Given That:
→ 4 sin θ = 3
→ sin θ = 3/4
Now, we have:
= 4 sin²θ - 3 cos²θ + 2
Can be written as:
= 4 sin²θ - 3(1 - sin²θ) + 2 [As sin²θ + cos²θ = 1]
= 4 sin²θ - 3 + 3 sin²θ + 2
= 7 sin²θ - 1
= 7 × 9/16 - 1
= 63/16 - 1
= (63 - 16)/16
= 47/16
Therefore:
→ 4 sin²θ - 3 cos²θ + 2 = 47/16 (Answer)
Learn More:
1. Relationship between sides and T-Ratios.
- sin(x) = Height/Hypotenuse
- cos(x) = Base/Hypotenuse
- tan(x) = Height/Base
- cot(x) = Base/Height
- sec(x) = Hypotenuse/Base
- cosec(x) = Hypotenuse/Height
2. Square formulae.
- sin²(x) + cos²(x) = 1
- cosec²(x) - cot²(x) = 1
- sec²(x) - tan²(x) = 1
3. Reciprocal Relationship.
- sin(x) = 1/cosec(x)
- cos(x) = 1/sec(x)
- tan(x) = 1/cot(x)
4. Cofunction identities.
- sin(90° - x) = cos(x)
- cos(90° - x) = sin(x)
- cosec(90° - x) = sec(x)
- sec(90° - x) = cosec(x)
- tan(90° - x) = cot(x)
- cot(90° - x) = tan(x)
5. Even odd identities.
- sin(-x) = -sin(x)
- cos(-x) = cos(x)
- tan(-x) = -tan(x)
Similar questions