Math, asked by nishanthpsd01p86kg9, 1 year ago

i want to know how to do this by proving in trignometry

Attachments:

eminemrules101: You’re in 10th?

Answers

Answered by Anonymous
0
⭐⭐Hello friend..Ur answer is here⤵⤵

⚫ First we find sin56°-sin44°

Applying the formula SinC-SinD=2CosC+D/2•SinC-D/2

➡sin56°-sin44°=2Cos56+44/2•Sin56-44/2

➡sin56°-sin44°=2Cos50°•Sin6°

⚫Now we find Cos56°+Cos44°

Applying the formula CosC+CosD=2CosC+D/2•CosC-D/2

➡Cos56°+Cos44°=2Cos56+44/2•Cos56-44/2

➡Cos56°+Cos44°=2Cos50°•Cos6°

Now putting the above values in...

➡sin56°-sin44°/Cos56°+Cos44°=2Cos50°•Sin6°/2Cos50°•Cos6°

➡sin56°-sin44°/Cos56°+Cos44°=tan6°

➡sin56°-sin44°/Cos56°+Cos44°=tan (90-84)

➡sin56°-sin44°/Cos56°+Cos44°=Cot84°

I HOPE IT IS HELPFUL TO YOU ☺


Similar questions