i want to know how to do this by proving in trignometry
Attachments:
eminemrules101:
You’re in 10th?
Answers
Answered by
0
⭐⭐Hello friend..Ur answer is here⤵⤵
⚫ First we find sin56°-sin44°
Applying the formula SinC-SinD=2CosC+D/2•SinC-D/2
➡sin56°-sin44°=2Cos56+44/2•Sin56-44/2
➡sin56°-sin44°=2Cos50°•Sin6°
⚫Now we find Cos56°+Cos44°
Applying the formula CosC+CosD=2CosC+D/2•CosC-D/2
➡Cos56°+Cos44°=2Cos56+44/2•Cos56-44/2
➡Cos56°+Cos44°=2Cos50°•Cos6°
Now putting the above values in...
➡sin56°-sin44°/Cos56°+Cos44°=2Cos50°•Sin6°/2Cos50°•Cos6°
➡sin56°-sin44°/Cos56°+Cos44°=tan6°
➡sin56°-sin44°/Cos56°+Cos44°=tan (90-84)
➡sin56°-sin44°/Cos56°+Cos44°=Cot84°
I HOPE IT IS HELPFUL TO YOU ☺
⚫ First we find sin56°-sin44°
Applying the formula SinC-SinD=2CosC+D/2•SinC-D/2
➡sin56°-sin44°=2Cos56+44/2•Sin56-44/2
➡sin56°-sin44°=2Cos50°•Sin6°
⚫Now we find Cos56°+Cos44°
Applying the formula CosC+CosD=2CosC+D/2•CosC-D/2
➡Cos56°+Cos44°=2Cos56+44/2•Cos56-44/2
➡Cos56°+Cos44°=2Cos50°•Cos6°
Now putting the above values in...
➡sin56°-sin44°/Cos56°+Cos44°=2Cos50°•Sin6°/2Cos50°•Cos6°
➡sin56°-sin44°/Cos56°+Cos44°=tan6°
➡sin56°-sin44°/Cos56°+Cos44°=tan (90-84)
➡sin56°-sin44°/Cos56°+Cos44°=Cot84°
I HOPE IT IS HELPFUL TO YOU ☺
Similar questions