Math, asked by abishekkarthik0, 3 months ago

i x-1/x=5, then find x+1/x

Answers

Answered by itzkritika013
32

x +  \frac{1}{x}  = 5 \\  \\  \frac{1}{x}  = 5 - x ...(1)\\  \\ now \: x -  \frac{1}{x}  \\  \\ x - 5 + x \: (from \: equation \: 1) \\  \\  =  \:  - 5

hope it is helpful for you

Answered by MagicalBeast
5

Given :

 \sf \: x -  \dfrac{1}{ x}  = 5

To find :

 \sf \: x  +  \dfrac{1}{ x}

Identity used :

  • (a-b)² = a² + b² - 2ab
  • (a+b)² = a² + b² + 2ab

Solution :

We are given that

 \sf \: x -  \dfrac{1}{ x}  = 5

Now squaring both side

 \sf   \implies \: \bigg(\: x -  \dfrac{1}{ x}   \bigg)^{2}  =  {5}^{2}

\sf   \implies \: \bigg(\:  {(x)}^{2}   +  \bigg(\dfrac{1}{ x}  { \bigg)}^{2}    \:  - 2 \times (x) \times \bigg( \dfrac{1}{x}  \bigg)  \:  \:  \bigg) \: =  \:  {5}^{2}

\sf   \implies \: \:  {(x)}^{2}   +  \bigg(\dfrac{1}{ x}  { \bigg)}^{2}    \:  - 2  =  25

\sf   \implies \: \:  {(x)}^{2}   +  \bigg(\dfrac{1}{ x}  { \bigg)}^{2}    \:    =  25 \:  + 2

\sf   \implies \: \:  {(x)}^{2}   +  \bigg(\dfrac{1}{ x}  { \bigg)}^{2}    \:    =  27 \:  \:  \:  \:  \: equation \: 1

________________________________

\sf \: x  +  \dfrac{1}{ x}

Squaring both side

\sf   \implies \: \bigg(\: x  +   \dfrac{1}{ x}   \bigg)^{2}   = \bigg(\:  {(x)}^{2}   +  \bigg(\dfrac{1}{ x}  { \bigg)}^{2}    \:   + 2 \times (x) \times \bigg( \dfrac{1}{x}  \bigg)  \:  \:  \bigg) \:

\sf   \implies \: \bigg(\: x  +   \dfrac{1}{ x}   \bigg)^{2}   = \bigg(\:  {(x)}^{2}   +  \bigg(\dfrac{1}{ x}  { \bigg)}^{2}    \:   \bigg) + 2

\sf \bullet \: put \: value \: of \: \bigg(\:  {(x)}^{2}   +  \bigg(\dfrac{1}{ x}  { \bigg)}^{2}    \:   \bigg)  \: from \: equation \: 1 \\ \\ \sf   \implies \: \bigg(\: x  +   \dfrac{1}{ x}   \bigg)^{2}   = 27 + 2

\sf   \implies \: \bigg(\: x  +   \dfrac{1}{ x}   \bigg)^{2}   = 29

\sf   \implies \: \bigg(\: x  +   \dfrac{1}{ x}   \bigg) \: =  \:  \sqrt{29}

\sf   \implies \: \bigg(\: x  +   \dfrac{1}{ x}   \bigg) \: =  \:  \pm \: 29

________________________________

ANSWER : ± 29

Similar questions