Math, asked by basmal, 3 months ago

Identify the area of a rhombus whose diagonals are 13 cm and 6 cm long.​

Answers

Answered by arwamariabohra
0

Answer:

39 cm is the area of rhombus

Answered by INSIDI0US
4

Step-by-step explanation:

Question :-

  • Find the area of rhombus whose diagonals measures 13 cm and 6 cm.

To Find :-

  • Area of rhombus.

Solution :-

Given :

  • Diagonal (1) = 13 cm
  • Diagonal (2) = 6 cm

By using the formula,

{\sf{\longrightarrow Area\ of\ rhombus\ =\ \dfrac{1}{2} \times d_1 \times d_2}}

Where,

  • d = length of the diagonals

According to the question, by using the formula, we get :

{\sf{\longrightarrow Area\ of\ rhombus\ =\ \dfrac{1}{2} \times d_1 \times d_2}}

{\sf{\longrightarrow \dfrac{1}{\cancel2} \times 13 \times \cancel6}}

{\sf{\longrightarrow 13 \times 3}}

{\sf{\longrightarrow 39\ cm^2}}

\therefore Hence, area of rhombus is 39 cm².

More To Know :-

\begin{gathered}\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}\end{gathered}

Similar questions