Math, asked by 001007834, 9 months ago

Identify the equation to find the height of a conical tank whose diameter is 8 ft and volume is 45 feet3.

Answers

Answered by sanjeevk28012
0

Given :

The diameter of the conical tank = d = 8 ft

The volume of conical tank = v = 45 cubic feet

To Find :

The equation to find the height of a conical tank

Solution :

∵ Diameter = d = 8 ft

So, radius = \dfrac{d}{2} = \dfrac{8}{2}

                 = 4 ft

Let The Height of cone = h ft

Volume of conical tank = \dfrac{1}{3} × π × radius² × height

                             45 ft³   =  \dfrac{1}{3} × 3.14 × (4 ft)² × h ft

Or,                                45 = 16.74 h

∴                                    h = \dfrac{45}{16.74} ft

i.e                     height = h = 2.688 ft

Hence, The height of the conical tank is 2.688 ft   Answer

                                       

Similar questions