Math, asked by Sayeediqbal6747, 1 year ago

If 0 less than a less than B less than pi by ,sin (A+ B) is equal to 24 by 25 , cos( A - B) equal to 4 by 5 find the value of tan 2a

Answers

Answered by sanjeeviraj02
6

Answer:

Step-by-step explanation:

Answered by Sharad001
56

Question :-

 \sf{if \:  \sin \: (A + B) =  \frac{24}{25}  \: and \:  \cos(A - B) =  \frac{4}{5} } \\  \sf{then \: find \:  \tan2A} \\

Answer :-

\boxed{\sf{ \tan \: 2A =  - \frac{3}{4} }} \:

To find :-

→ Value of tan 2A

Formula used :-

 \star  \:  \boxed{\sf{  \tan \: (x + y) =  \frac{ \tan \: x \:  +  \tan \: y}{1 -  \tan \: x \tan \: y} }}

Explanation :-

According to the question,

 \implies \sf{ \sin \: (A + B) =  \frac{24}{25}  =  \frac{P}{H} } \\  \:  \sf{by \: pythagoras \: theorem} \\   \\ \rightarrow \sf{  {H}^{2}  =  {P}^{2}  +   {B}^{2} } \\  \\  \rightarrow \sf{625 = 576  +  {B}^{2} } \\  \\  \rightarrow \sf{ {B}^{2}  = 49} \\  \\  \rightarrow \boxed{ \sf{ B \:  = 7}} \\  \\  \therefore \sf{  \tan(A + B) =  \frac{p}{b}  =  \frac{24}{7} } \:...eq.(1)  \\  \\  \sf{now \: from \: } \\  \\  \implies \sf{ \cos \: (A - B) =  \frac{4}{5}  =  \frac{b}{h} } \\  \\  \tt{by \: pythagoras \: theorem} \\  \\  \rightarrow \sf{ {H}^{2}  =  {P}^{2}  +  {B}^{2} } \\  \\  \rightarrow \sf{25 =  {P}^{2}  + 16} \\  \\  \rightarrow \sf{ {P}^{2}  = 9} \\  \\  \rightarrow  \boxed{\sf{P = 3}} \\  \\  \therefore \sf{ \tan(A - B) =  \frac{P}{B}  =  -\frac{3}{4} } \: ....eq.(2) \\  \sf{ taking \: negative \: \because \: A\:  less \: then \:B }\\ \\ \tt hence \\  \\  \rightarrow \sf{ \tan \: 2A = tan(A + A)} \\  \\  \rightarrow  \tan \: 2A =  \sf{  \tan(A + A + B - B)} \\  \\  \rightarrow \:  \tan \: 2A =  \tan \big((A + B)  + (A - B) \big) \\  \\  \rightarrow  \sf{\tan \: 2A =  \frac{ \tan(A + B) +  \tan(A - B)}{1 -  \tan(A + B) \tan(A - B)} } \\  \\   \sf{now \: from \: eq.(1) \: and \: eq.(2)} \\  \\  \rightarrow \sf{ \tan \: 2A =  \frac{ \frac{24}{7}  -  \frac{3}{4} }{1 +  \frac{24}{7}. \frac{3}{4}  } } \\  \\  \rightarrow \sf{ \tan \: 2A =  \frac{ \frac{96 - 21}{28} }{ \frac{28 + 72}{28} } } \\  \\  \rightarrow  \boxed{\sf{ \tan \: 2A =    \frac{3}{4} }}

here P is perpendicular , H is hypotenuse and B is base .

________________________

#answerwithquality

#BAL

Similar questions