Math, asked by PratyushMallik81811, 1 year ago

Sin(1+tan)+cos(1+cot)=sec•cosec

Answers

Answered by Anonymous
0

 \to \:  \sin \theta(1 + \tan \theta) + \cos \theta(1 + \cot \theta) \\ \\  \to \sf \sin \theta + \sin \theta \times \frac{ \sin \theta}{ \cos \theta} + \cos \theta + \cos \theta \times \frac{ \cos \theta}{ \sin \theta} \\ \\ \to \frac{ \sin^{2}\theta \cos \theta + { \sin}^{2} \theta + { \cos}^{2} \theta \sin \theta + { \cos}^{2} \theta }{ \sin \theta \cos \theta} \\ \\ \to \frac{( { \sin}^{3} \theta + { \cos}^{3} \theta) + ( \cos \theta { \sin}^{2} \theta + { \cos}^{2} \theta \sin \theta)}{ \cos \theta \sin \theta }  \\ \\ \to \frac{( \sin \theta + \cos \theta)( { \sin}^{2} \theta - \sin \theta \cos \theta + { \cos}^{2} \theta) + \sin \theta \cos \theta( \sin \theta + \cos \theta)}{ \cos \theta \sin \theta}  \\ \\ \to \frac{( \sin \theta + \cos \theta)( { \sin}^{2} \theta + { \cos}^{2} \theta \cancel{ - \sin \theta \cos \theta} \cancel{ + \sin \theta \cos \theta})}{ \cos \theta \sin \theta}  \\ \\ \to \frac{( \sin \theta + \cos \theta) \times 1}{ \cos \theta \sin \theta}  \\ \\ \to \frac{ \cancel{ \sin \theta}}{ \cos \theta \cancel{\sin \theta}} + \frac{ \cancel{\cos \theta}}{ \cancel{ \cos \theta} \sin \theta} \\ \\ \to \frac{1}{ \cos \theta} + \frac{1}{ \sin \theta}  \\ \\  \to \huge { \boxed{ \boxed{ \tt = \sec \theta + cosec \theta }}}

Hence proved

Answered by sk197320
0

Answer:

may this help it is short also

Attachments:
Similar questions