Math, asked by kavithabairy1984, 4 months ago

if 0 less than a less than B then limit X tends to infinity e b power n + a power and whole to the power 1 by N is equals to​

Answers

Answered by pulakmath007
2

SOLUTION

TO DETERMINE

0 < a < b \:  \: then

\displaystyle \lim_{n \to  \infty }  \:  { \big(  {b}^{n}  + {a}^{n}  \big)}^{ \frac{1}{n} }

EVALUATION

Here we have to find

\displaystyle \lim_{n \to  \infty }  \:  { \big(  {b}^{n}  + {a}^{n}  \big)}^{ \frac{1}{n} }

Let

\displaystyle x_{n } =   \:  { \big(  {b}^{n}  + {a}^{n}  \big)}^{ \frac{1}{n} }

\displaystyle \implies x_{n } =   \: b { \bigg(  1  + { \bigg(  \frac{a}{b} \bigg)}^{n}  \bigg)}^{ \frac{1}{n} }

Since

0 < a < b

 \displaystyle \: 0 <  \frac{a}{b}  < 1

\displaystyle \implies b <    \: b { \bigg(  1  + { \bigg(  \frac{a}{b} \bigg)}^{n}  \bigg)}^{ \frac{1}{n}  }  < b. {2}^{ \frac{1}{n} }

\displaystyle \implies b < x_{n }  < b. {2}^{ \frac{1}{n} }   \:  \: ....(1)

Now

\displaystyle \lim_{n \to  \infty } b = b

\displaystyle \lim_{n \to  \infty } b. {2}^{ \frac{1}{n} }  = b

So by Sandwich Theorem we get from (1)

\displaystyle \lim_{n \to  \infty } x_n = b

Hence

\displaystyle \lim_{n \to  \infty }  \:  { \big(  {b}^{n}  + {a}^{n}  \big)}^{ \frac{1}{n} }  = b

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of limited x to 0 sin7x+sin5x÷tan5x-tan2x is

https://brainly.in/question/28582236

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions