If 0 < θ ≤ 90°, solve for 'θ' where
cos² θ - 3 cos θ + 2 = 2 sin² θ.
Answers
Note : Theta is written as A.
Answer:
Required measure of angle A is 90°.
Step-by-step explanation:
= > cos^2 A - 3 cosA + 2 = 2 sin^2 A
From the properties of trigonometry :
- sin^2 ∅ + cos^2 ∅ = 1
- sin^2 ∅ = 1 - cos^2 ∅
= > cos^2 A - 3 cosA + 2 = 2( 1 - cos^2 A ) { 2sin^2 A = 2( 1 - cos^2 A ) }
= > cos^2 A - 3 cosA + 2 = 2 - 2 cos^2 A
= > 2 cos^2 A + cos^2 A - 3 cosA + 2 - 2 = 0
= > 3 cos^2 A - 3 cosA = 0
= > 3 cosA ( cosA - 1 ) = 0
Case 1 : If cosA is 0 .
= > 3 cosA = 0
= > cosA = 0
= > cosA = cos90°
= > A = 90° or π / 2
Case 2 : If cosA - 1 is zero.
= > cosA - 1 = 0
= > cosA = 1
= > cosA = cos0°
But here, theta or A is greater than 0°, cosA ≠ cos0°
Therefore the required measure of angle A is 90°.
--------------------------------------------------
Explanation—
--------------------------------------------------
Identity —
sin²θ + cos²θ = 1
⇒sin²θ = 1 - cos²θ
--------------------------------------------------
cos² θ - 3 cos θ + 2 = 2 sin² θ.
⇒cos² θ - 3 cos θ + 2 = 2(1-cos²θ)
⇒cos² θ - 3 cos θ + 2 = 2 - 2cos²θ.
⇒3cos²θ - 3cosθ = 0
⇒3cosθ(cosθ - 1) =0
3cosθ =0 ¦ cosθ - 1 =0
cos θ =0 ¦ cosθ =1
Now we know in 0 < θ ≤ 90°, θ is positive
∴ θ = 90 ¦ ∴ θ = 0
Satisfying this value in original equation
θ =90° satisfid✔
θ = 0° not satisfied ❌
Hence, the required angle is 90°
#Learn together, Grow together