If 0 < A < B < and sin(A + B) = and cos(A - B) = , then find the value of tan 2A.
Answers
Answered by
0
given, If 0 < A < B < and sin(A + B) = and cos(A - B) = .
sin(A + B) = 24/25
so, cos(A + B) = 7/25
again, cos(A - B) = 4/5
so, sin(A - B) = 3/5
now, sin2A = sin{(A + B) + (A - B)}
= sin(A + B).cos(A - B) + sin(A - B) cos(A + B)
= 24/25 × 4/5 + 7/25 × 3/5
= 96/125 + 21/125
= 117/125
sin2A = 117/125 = p/h
so, p = 117 and h = 125
then, b = √(h² - p²) = √(125² - 117²)
= √(125 + 117)(125 - 117) = √(242 × 8)
= 11 × 4 = 44
hence, tan2A = p/b = 117/44
sin(A + B) = 24/25
so, cos(A + B) = 7/25
again, cos(A - B) = 4/5
so, sin(A - B) = 3/5
now, sin2A = sin{(A + B) + (A - B)}
= sin(A + B).cos(A - B) + sin(A - B) cos(A + B)
= 24/25 × 4/5 + 7/25 × 3/5
= 96/125 + 21/125
= 117/125
sin2A = 117/125 = p/h
so, p = 117 and h = 125
then, b = √(h² - p²) = √(125² - 117²)
= √(125 + 117)(125 - 117) = √(242 × 8)
= 11 × 4 = 44
hence, tan2A = p/b = 117/44
Answered by
0
HELLO DEAR,
sin(A + B) = 24/25
so, cos(A + B) = 7/25
andcos(A - B) = 4/5
so, sin(A - B) = 3/5
now,
sin2A = sin{(A + B) + (A - B)}
=> sin(A + B).cos(A - B) + sin(A - B) cos(A + B)
=> 24/25 × 4/5 + 7/25 × 3/5
=> 96/125 + 21/125
=> 117/125
sin2A = 117/125 = p/h
so, p = 117 and h = 125
then, b = √(h² - p²) = √(125² - 117²)
= √(125 + 117)(125 - 117) = √(242 × 8) =√(121 × 16)
= 11 × 4 = 44
hence, tan2A = p/b = 117/44
I HOPE IT'S HELP YOU DEAR,
THANKS
sin(A + B) = 24/25
so, cos(A + B) = 7/25
andcos(A - B) = 4/5
so, sin(A - B) = 3/5
now,
sin2A = sin{(A + B) + (A - B)}
=> sin(A + B).cos(A - B) + sin(A - B) cos(A + B)
=> 24/25 × 4/5 + 7/25 × 3/5
=> 96/125 + 21/125
=> 117/125
sin2A = 117/125 = p/h
so, p = 117 and h = 125
then, b = √(h² - p²) = √(125² - 117²)
= √(125 + 117)(125 - 117) = √(242 × 8) =√(121 × 16)
= 11 × 4 = 44
hence, tan2A = p/b = 117/44
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions