Math, asked by RuhiSaikia, 9 months ago

If 1/2 is a root of the quadratic equation x²-mx-5/4=0 , then the value of m is? ​

Answers

Answered by pulakmath007
32

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

\displaystyle \sf{ \frac{1}{2}  \:  \: is  \: a \:  root \:  of  \: the  \: quadratic \:  equation }

\displaystyle \sf{ {x}^{2} - mx -  \frac{5}{4}    = 0\: }

TO DETERMINE

The value of m

CALCULATION

 \because \: \displaystyle \sf{ \frac{1}{2}  \:  \: is  \: a \:  root \:  of  \: the  \: quadratic \:  equation }

\displaystyle \sf{ {x}^{2} - mx -  \frac{5}{4}    = 0\: }

So

 \displaystyle \sf{ { \bigg(  \frac{1}{2} \bigg)}^{2}  - m \times  \frac{1}{2}  -  \frac{5}{4} } = 0

  \implies \:  \displaystyle \sf{  \frac{1}{4}  -   \frac{m}{2}  -  \frac{5}{4} } = 0 \:

  \implies \:  \displaystyle \sf{   -   \frac{m}{2}  - 1 } = 0 \:

  \implies \:  \displaystyle \sf{   -   \frac{m}{2}   = 1 }  \:

  \implies \:  \displaystyle \sf{ m =  - 2  }

RESULT

Hence the value of m is - 2

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

Similar questions