Math, asked by harshpratapsingh93, 25 days ago

if (1+2i)x - (1-i)y=2-i, where i=√-1, then find the value of x and y​

Answers

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find =   \\  values \: of \: x \: and \: y \\  \\ here \:  \\ (1 + 2i)x - (1 - i)y = 2 - i \\  \\ =  x + 2ix \:  - (y - iy) \\  \\  = x + 2ix - y + iy \\  \\  = (x - y) + (2x + y)i \\  \\ comparing \: real \: and \: imaginary \: parts \\  \\ x - y = 2 \:  \:  \:  \:  \:  \:  \:  \: (1) \\  \\ 2x + y =  - 1 \:  \:  \:   \:  \:  \:  \:  \:  \: (2) \\  \\ applying \: now \\ (1) + (2) \\  \\ 3x = 1 \\  \\ x =  \frac{1}{3}  \\  \\ substitute \: value \: of \: x \: in \: (1) \\ we \: get \\  \\ y =   \frac{ - 5}{3}  \\  \\ hence \: then \\  \\ (x,y) = (  \: \frac{1}{3}  \: , \:  \frac{ - 5}{3}  \: )

Similar questions