Math, asked by anubhav2506, 1 year ago

if 1/3×9 + 1/9×15 +..........upto 1/93×99 , then root 33x equals to​

Answers

Answered by amitnrw
0

√33x  = 4/3  if x = 1/3×9 + 1/9×15 +..........upto 1/93×99

Step-by-step explanation:

x = 1/3×9 + 1/9×15 +..........................+ 1/93 * 99

1/3* 9  =  (1/6) ( 1/3  - 1/9)

1/9*15  = (1/6) (1/9 - 1/5)

x  = (1/6)  (   1/3  - 1/9  +  1/9  - 1/15   +...............................+ 1/93 - 1/99)

=> x= (1/6) ( 1/3  - 1/99)

=>  x  = ( 1/6)  ( 33 - 1) /99

=> x = 32 / (6 * 99)

=> x = 16 ( 3 * 99)

=>  33x =  33 * 16 / ( 3 * 99)

=> 33x  = 16 /(3 * 3)

=> 33x  =  (4/3)²

=> √33x  = 4/3

Learn More:

Find the sum of 100 terms of the series 1(3)+3(5)+5(7)+...

https://brainly.in/question/7472116

Answered by amirgraveiens
0

Given: \frac{1}{3\times 9}+\frac{1}{9\times 15}+.........+\frac{1}{93\times 99}

To Find: Find the value of \sqrt{33x}.

Step-by-step explanation:

Lets,

x=\frac{1}{3\times 9}+\frac{1}{9\times 15}+.........+\frac{1}{93\times 99}

First terms,

\frac{1}{3\times 9}=\frac{1}{6}(\frac{1}{3}-\frac{1}{9})

Second terms,

\frac{1}{9\times 15}=\frac{1}{6}(\frac{1}{9}-\frac{1}{15})

Similarly all terms will be come.

x=\frac{1}{6}(\frac{1}{3}-\frac{1}{9})+\frac{1}{6}(\frac{1}{9}-\frac{1}{15})+.............+\frac{1}{6}(\frac{1}{93}-\frac{1}{99})

Take \frac{1}{6} common from above equation,

x=\frac{1}{6}(\frac{1}{3}-\frac{1}{9}+\frac{1}{9}-\frac{1}{15}+.............+\frac{1}{93}-\frac{1}{99})

x=\frac{1}{6}(\frac{1}{3}-\frac{1}{99})

x=\frac{1}{6}(\frac{33-1}{99})

x=\frac{1}{6}\times \frac{32}{99}

Multiply 33 on both sides,

33x=\frac{1}{6}\times \frac{32}{99}\times 33

33x=\frac{16}{9}

33x=(\frac{4}{3}) ^{2}

Take root on both sides,

\sqrt{33x}=\frac{4}{3}

So, The value of \sqrt{33x} is \frac{4}{3}.

Similar questions