if 1/3×9 + 1/9×15 +..........upto 1/93×99 , then root 33x equals to
Answers
√33x = 4/3 if x = 1/3×9 + 1/9×15 +..........upto 1/93×99
Step-by-step explanation:
x = 1/3×9 + 1/9×15 +..........................+ 1/93 * 99
1/3* 9 = (1/6) ( 1/3 - 1/9)
1/9*15 = (1/6) (1/9 - 1/5)
x = (1/6) ( 1/3 - 1/9 + 1/9 - 1/15 +...............................+ 1/93 - 1/99)
=> x= (1/6) ( 1/3 - 1/99)
=> x = ( 1/6) ( 33 - 1) /99
=> x = 32 / (6 * 99)
=> x = 16 ( 3 * 99)
=> 33x = 33 * 16 / ( 3 * 99)
=> 33x = 16 /(3 * 3)
=> 33x = (4/3)²
=> √33x = 4/3
Learn More:
Find the sum of 100 terms of the series 1(3)+3(5)+5(7)+...
https://brainly.in/question/7472116
Given:
To Find: Find the value of .
Step-by-step explanation:
Lets,
First terms,
Second terms,
Similarly all terms will be come.
∴
Take common from above equation,
⇒
⇒
⇒
⇒
Multiply on both sides,
⇒
⇒
⇒
Take root on both sides,
∴
So, The value of is .