Math, asked by dopeiv203, 2 months ago

if 1,a,a^2,...a^n-1 are nth roots of unity , then the value of (3-a) (3-a^2)....(3-a^n-1) is :​

Answers

Answered by Swarup1998
4

Given data:

\mathsf{1,a,a^{2},...,a^{n-1}} are \mathsf{n}-th roots of unity

To find:

The value of \mathsf{(3-a)(3-a^{2})...(3-a^{n-1})}

Step-by-step explanation:

Since \mathsf{1,a,a^{2},...,a^{n-1}} are \mathsf{n}-th roots of unity, we can take a variable \mathsf{x} and write the following relation,

\mathsf{\quad x^{n}-1=(x-1)(x-a)(x-a^{2})...(x-a^{n-1})}

\mathsf{\Rightarrow (x-1)(x-a)(x-a^{2})...(x-a^{n-1})=x^{n}-1}

\mathsf{\Rightarrow (x-a)(x-a^{2})...(x-a^{n-1})=\frac{x^{n}-1}{x-1}} since \mathsf{x\neq 1}

Putting \mathsf{x=3} in both sides of the above relation, we get

\mathsf{\quad (3-a)(3-a^{2})...(3-a^{n-1})=\frac{3^{n}-1}{3-1}}

\mathsf{\Rightarrow (3-a)(3-a^{2})...(3-a^{n-1})=\frac{3^{n}-1}{2}}

\mathsf{\Rightarrow (3-a)(3-a^{2})...(3-a^{n-1})=\frac{1}{2}(3^{n}-1)}

Answer:

\mathsf{(3-a)(3-a^{2})...(3-a^{n-1})=\frac{1}{2}(3^{n}-1)}

Similar questions