If 1 and 2 are zeros of polynomials of x^4-4x^3-15x^2+58x-40 find other zeros if any
Answers
Answered by
7
Hey Friend ☺
x^4 - 4x^3 - 15x^2 + 58x - 40 = 0
》x^4 - 5x^3 + x^3 - 15x^2 + 58x - 40
》x^3 ( x - 5 ) + x^3 - 15x^2 + 58x - 40
》x^3 ( x - 5 ) + x^3 - 5x^2 - 10x^2 + 58x - 40
》x^3 ( x - 5 ) + x^2 ( x - 5 ) - 10x^2 + 58x - 40
》x^3 ( x - 5 ) + x^2 ( x- 5 ) - 10x^2 + 50x + 8x - 40
》x^3 ( x - 5 ) + x^2 ( x - 5 ) - 10x ( x - 5 ) + 8 ( x - 5 )
Taking ( x - 5 ) as common we get
》( x - 5 ) ( x^3 + x^2 - 10x + 8 )
》( x - 5 ) ( x^3 - 2x^2 + 3x^2 - 10x + 8 )
》( x - 5 ) [ x^2 ( x - 2 ) + 3x^2 - 10x + 8 ]
》( x - 5 ) [ x^2 ( x - 2 ) + 3x^2 - 6x - 4x + 8]
》( x - 5 ) [ x^2 ( x - 2 ) + 3x ( x - 2 ) - 4 ( x - 2 ) ]
》( x - 5 )( x - 2 )( x^2 + 3x - 4 )
》( x - 5 )( x - 2 )( x^2 + 4x - x - 4 )
》( x - 5 )( x - 2 )[ x ( x + 4 ) + 1 ( x + 4 ) ]
》( x - 5 )( x - 2 )( x + 4 )( x + 1 ) = 0
So other zeroes of the equation are 5 & - 4
Hope it helps you ..!!
✌
x^4 - 4x^3 - 15x^2 + 58x - 40 = 0
》x^4 - 5x^3 + x^3 - 15x^2 + 58x - 40
》x^3 ( x - 5 ) + x^3 - 15x^2 + 58x - 40
》x^3 ( x - 5 ) + x^3 - 5x^2 - 10x^2 + 58x - 40
》x^3 ( x - 5 ) + x^2 ( x - 5 ) - 10x^2 + 58x - 40
》x^3 ( x - 5 ) + x^2 ( x- 5 ) - 10x^2 + 50x + 8x - 40
》x^3 ( x - 5 ) + x^2 ( x - 5 ) - 10x ( x - 5 ) + 8 ( x - 5 )
Taking ( x - 5 ) as common we get
》( x - 5 ) ( x^3 + x^2 - 10x + 8 )
》( x - 5 ) ( x^3 - 2x^2 + 3x^2 - 10x + 8 )
》( x - 5 ) [ x^2 ( x - 2 ) + 3x^2 - 10x + 8 ]
》( x - 5 ) [ x^2 ( x - 2 ) + 3x^2 - 6x - 4x + 8]
》( x - 5 ) [ x^2 ( x - 2 ) + 3x ( x - 2 ) - 4 ( x - 2 ) ]
》( x - 5 )( x - 2 )( x^2 + 3x - 4 )
》( x - 5 )( x - 2 )( x^2 + 4x - x - 4 )
》( x - 5 )( x - 2 )[ x ( x + 4 ) + 1 ( x + 4 ) ]
》( x - 5 )( x - 2 )( x + 4 )( x + 1 ) = 0
So other zeroes of the equation are 5 & - 4
Hope it helps you ..!!
✌
Similar questions