Math, asked by samajax101, 1 month ago

If -1 and 3 are the roots of x^2 + px + q = 0, find the values of p and q.

Answers

Answered by mathdude500
2

\large\underline{\sf{Given- }}

\rm :\longmapsto\: - 1 \: and \: 3 \: are \: the \: roots \: of \:  {x}^{2} + px + q = 0

\large\underline{\sf{To\:Find - }}

\boxed{ \bf{ \: p \:  \: and \:  \: q}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: - 1 \: and \: 3 \: are \: the \: roots \: of \:  {x}^{2} + px + q = 0

We know that

\boxed{\red{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm\implies\: - 1 \times 3 = \dfrac{q}{1}

\bf\implies \:q =  \:  -  \: 3

Also,

\boxed{\red{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm\implies\: - 1  +  3 \:  = -  \:  \dfrac{p}{1}

\bf\implies \:p \:  =  \:  -  \: 2

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\: Hence \: - \: \begin{cases} &\bf{p \:  =  \:  -  \: 2} \\ &\bf{q \:  =  \:  -  \: 3} \end{cases}\end{gathered}\end{gathered}

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: roots \: of \: a {x}^{3}  + b {x}^{2} +  cx + d = 0, \: then}

\boxed{ \bf{ \:  \alpha   + \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta    + \beta \gamma   +  \gamma \alpha   =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions