Math, asked by soumyashreen96, 3 months ago

If (1+cosA )( 1-cosA) = 3/4, find the value of secA.​

Answers

Answered by Anonymous
5

\tt{Solution:-}

\tt{Step \:by \:step \:explanation:-}

\large\tt{Given:-}

\large\tt( 1 + cosA ) ( 1 - cosA ) = \tt\dfrac{3}{4}

\large\tt{To find:-}

\tt{secA}

\large\tt{Solution:-}

\large\tt( 1 + cosA ) ( 1 - cosA ) = \tt\dfrac{3}{4}

\large\tt{It\: is\: in\: form \:of (a + b) ( a - b ) = a^2-b^2}

Similarily,

\large\tt( 1 + cosA ) ( 1 - cosA ) = \tt\dfrac{3}{4}

\large\tt{1 - cos^2A =} \tt\dfrac{3}{4}

\large\tt{From,\: \: Trigonmetric \: \: Identities}

\large\tt{sin^2A + cos^2A = 1 }

\large\tt{1- cos^2A = sin²A}

So,

\large\tt{1 - cos^2A} = \tt\dfrac{3}{4}

\large\tt{sin^2A}= \tt\dfrac{3}{4}

\large\tt{sinA}= \tt\sqrt{3}{4}

\large\tt{sinA} = \tt\sqrt{3}/2

\large\tt{From\: \: Trigonmetric\: \: table}

\large\tt{sin60} = \tt\sqrt{3}/2

So,

\large\tt{sinA} = \tt\sqrt{3}/2

A = 60°

Now,

\large\tt{secA = sec60}

\large\tt{secA = 2}

\large\tt{So\: secA=2}

__________________

\large\tt{Know\: more:-}

\large\tt{Trigonmetric\: \: Identities:-}

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

\large\tt{Trigonmetric \: \:relations:-}

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

\large\tt{Trigonmetric \: \:ratios:-}

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Answered by shreya629454
3

Answer:

Hey it's your answer...

Attachments:
Similar questions