Math, asked by zameer12, 1 year ago

If 1-cot^2theta/1+cot^2theta=1/2 and theta is an acute angle ,then find the value of theta​

Answers

Answered by Anonymous
1

Given \:  \: Question \:  \: Is \:  \:  \\  \\  \frac{1 -  \cot {}^{2} (x) }{1 +  \cot {}^{2} (x) }  =  \frac{1}{2}  \\  \\ Answer \:  \\  \\  \frac{1 -  \cot {}^{2} (x) }{ \csc {}^{2} (x) }  =  \frac{1}{2}  \\  \\  \frac{1 -  \frac{ \cos {}^{2} (x) }{ \sin {}^{2} (x) } }{ \csc {}^{2} ( {}^{} x) }  =  \frac{1}{2}  \\  \\  \frac{ \sin {}^{2} (x) -  \cos {}^{2} (x)  }{ \sin {}^{2} (x) \csc {}^{2} (x)  }  =  \frac{1}{2}  \\  \\  \frac{ \sin {}^{2} (x) -  \cos {}^{2} (x)  }{ \frac{ \sin {}^{2} (x) }{ \sin {}^{2} (x) } }  =  \frac{1}{2}  \\  \\  \sin {}^{2} (x)  -  \cos {}^{2} (x)  =  \frac{1}{2}  \\  \\  \sin {}^{2} (x)  - 1 +  \sin {}^{2} (x)  =  \frac{1}{2}  \\  \\  2\sin {}^{2} (x)  =  \frac{1}{2}  + 1 \\  \\ 2 \sin {}^{2} (x)  =  \frac{3}{2}  \\  \\  \sin {}^{2} (x)  =  \frac{3}{4}  \\  \\ Taking \: square \: \:  \: root \: on \: both \: sides \:  \\ we \: have \\  \\  \sqrt{ \sin {}^{2} (x) }  =  \sqrt{ \frac{3}{4} }  \\  \\  | \sin(x) |  =   \frac{ \sqrt{3} }{2}  \\  \\  \sin(x)  =   \frac{ \sqrt{3} }{2}  \:  \:  \:  \: \:  \:  \:  or \:  \:  \:  \:  \:  \:  \:  \sin(x)  =  -   \frac{ \sqrt{3} }{2}  \\  \\  \sin(x)  =  \sin(60)  \:  \:  \: or \:  \:  \:  \:  \sin( x )  =  \sin( - 60)  \\  \\ x = 60 \:  \:  \:  \: or \:  \:  \: x =  - 60 \\  \\ Note \:  \\  \\ 1) \:  \:  \:  \: 1 +  \cot {}^{2} (x)  =  \csc {}^{2} (x)  \\  \\ 2)  \:  \:  \:  \:  \cot {}^{2} (x)  =  \frac{ \cos {}^{2} (x) }{ \sin {}^{2} (x) }  \\  \\ 3) \:  \:  \:  \:  \sin {}^{2} (x)  =  \frac{1}{ \csc {}^{2} (x) }  \\  \\

Similar questions