Math, asked by maha20ramesh, 2 days ago

if 1+cot²(3A-20)=cosec² 52°, where 3A is an acute angle then what is the value of A​

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm \: 1 +  {cot}^{2}(3A - 20 \degree) \:  =  \:  {cosec}^{2}52\degree  \\

Also, given that

\rm \: 3A \: is \: an \: acute \: angle

\rm\implies \:\rm \: 3A  - 20\degree \: is  \: also\: an \: acute \: angle \\

\rm\implies \:cot(3A - 20\degree ) > 0 \\

Now, Consider the given Trigonometric equation

\rm \: 1 +  {cot}^{2}(3A - 20 \degree) \:  =  \:  {cosec}^{2}52\degree  \\

can be rewritten as

\rm \:{cot}^{2}(3A - 20 \degree) \:  =  \:  {cosec}^{2}52\degree  - 1 \\

We know that,

\boxed{\sf{  \:  {cosec}^{2}x -  {cot}^{2}x = 1 \:  \: }} \\

So, using this, we get

\rm \:  {cot}^{2}(3A - 20\degree ) =  {cot}^{2}52\degree

\rm\implies \:cot(3A - 20\degree ) = cot52\degree  \\

So, on comparing, we get

\rm \: 3A - 20\degree  = 52\degree  \\

\rm \: 3A   = 52\degree + 20\degree   \\

\rm \: 3A   = 72\degree \\

\rm\implies \:A = 24\degree  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by MysteriesGirl
71

{ \huge{ \boxed{ \bf{\underline{ \red{Answer}}}}}} : -

____________________

Hope it's Helpful :)

Attachments:
Similar questions