Math, asked by cutelixkhushi70, 2 months ago

If (1+i)^3/(1-i)^3 - (1-i)^3/(1+i)^3 = x+iy , find x and y
class 11 complex no.s

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \\  \frac{(1 + i) {}^{3} }{(1 - i) {}^{3} }  \:  -  \:  \frac{(1 - i) {}^{3} }{(1 + i) {}^{3} }  = x + iy \\  \\ ( \frac{1 + i}{1 - i} ) {}^{3}  \:  -  \: ( \frac{1 - i}{1 + i} ) {}^{3}  = x + iy \\  \\ so \: here \: ( \frac{1 + i}{1 - i} ) {}^{3}  \:  -  \: ( \frac{1 - i}{1 + i} ) {}^{3}  \: \:  is \: in \: form \: a {}^{3}   -  b {}^{3}  \\ so \: we \: know \: that \\ a {}^{3}   -  b {}^{3}  = (a - b)(a {}^{2}  + b {}^{2}  + ab) \\  \\ thus \: accordingly \\  \\  =  ( \: \frac{1 + i}{1 - i}  \:  -  \:  \frac{1 - i}{1 + i}  \: )(( \frac{1  +  i}{1  -  i} ) {}^{2}  + ( \frac{1 - i}{ 1+i }  \: ) {}^{2}  + ( \:  \frac{1 + i}{1 - i}  \times  \frac{1  - i}{1 + i}  \: )) \\  \\  = ( \frac{(1 + i)(1 + i) - (1 - i)(1 - i)}{(1 + i)(1 - i)} )( \frac{1 + i {}^{2}  + 2i}{1 + i {}^{2} - 2i }  \:  +  \:  \frac{1 + i {}^{2}  - 2i}{1 + i {}^{2}  + 2i}  \:  +  \: 1) \\  \\  = ( \frac{1 + i {}^{2} + 2i - (1 + i { }^{2}   - 2i)}{1 - i {}^{2} } )( \frac{1 + ( - 1) +2 i}{1 + ( - 1)  - 2i}  \:  +  \:  \frac{1 + ( - 1) - 2i}{1 + ( - 1) + 2i \:  }  \:  +  \: 1 \: ) \\  \\  = ( \frac{1 + i {}^{2} + 2i - 1 - i {}^{2}   +2 i}{1 - ( - 1)} )( \frac{1 - 1 + 2i}{1 - 1 - 2i}  \:  +  \:  \frac{1 - 1 - 2 i}{1 - 1 + 2i}  \:  +  \: 1) \\  \\  = ( \frac{2i + 2i}{1 +1 } )( \frac{2i}{ - 2i}  \:  +  \frac{( - 2i)}{2i} \:  +  \: 1 )  \\  \\  = ( \frac{4i}{2} )( - 1 + ( - 1) + 1) \\  \\  = 2i( - 1) \\  =  - 2i \\  =  - 2i + 0 \\  \\ comparing \: the \: imaginary \: part \: and \: real \: part \\  \: we \: get \\ x = 0 \:  \:  \: y =  - 2

Similar questions