Math, asked by Usernameis2083, 10 months ago

If ‘1’ is one of the zeroes of the polynomial 7x - x² -6 , find the other zeroes

Answers

Answered by Anonymous
16

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • '1' is a zero of the polynomial 7x - x² -6

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • The other zero of the polynomial.

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \underline{\bold{\texttt{General form</p><p>}}}

 \:\:

\red\longrightarrow ax² + bx + c

 \:\:

Above polynomial can be rewritten in general form as,

 \:\:

\purple\longrightarrow - x² + 7x -6

 \:\:

Here we got a quadratic polynomial.[Having degree = 2]

 \:\:

 \underline{\bold{\texttt{Zeroes of quadratic  polynomial}}}

 \:\:

 \bf \alpha \: \: \&amp;\: \: \beta

 \:\:

Also,

 \:\:

 \red{\bold{Sum \: of \: zeroes \: = \: \dfrac { -b } { a } }}

 \:\:

 \boxed {\rm \alpha \: \: + \: \: \beta \: = \frac { -b } { a } }

 \:\:

 \rm Let \: 1 \: be  \: \alpha

 \:\:

 \sf \longmapsto 1 +\: \beta \: = \dfrac { -7 } { -1 }

 \:\:

 \sf \longmapsto \beta \: = 7 - 1

 \:\:

 \bf \dashrightarrow \beta \: = 6

 \:\:

Hence the zeroes of given polynomial are 1 & 6

\rule{200}6

 \:\:

 \underline{\bold{\texttt{Additional information }}}

 \:\:

Product of zeroes of quadratic polynomial is  \bf \dfrac { c } { a }

\rule{200}5

Similar questions