Math, asked by harshita328571, 10 months ago

simplyfy [(3)^2]^3 + (2/3)^0 + 3^5 × (1/3)^4​

Answers

Answered by RvChaudharY50
2

Given :- simplify [(3)^2]^3 + (2/3)^0 + 3^5 × (1/3)^4 ?

Solution :-

[(3)^2]^3 + (2/3)^0 + 3^5 × (1/3)^4

using :-

  • (a^m)^n = a^(m * n)
  • a^0 = 1

→ 3^(2 * 3) + 1 + 3^5 * (1/3⁴)

→ 3⁶ + 1 + 3⁵ * 1/3⁴

using :-

  • 1/a^m = a^(-m)

→ 3⁶ + 1 + 3⁵ * 3^(-4)

using :-

  • a^m * a^n = a^(m + n)

→ 3⁶ + 1 + 3^(5 - 4)

→ 729 + 1 + 3

733 (Ans.)

Learn more :-

Consider the sequence defined by ak=1/k2-k for k ≥ 1. Given that aM + aM + 1 + …………+ aN – 1=1/29 for positive integers M...

https://brainly.in/question/42384271

(c)

75. From a number M subtract 1. Take the reciprocal of

the result to get the value of 'N'. Then which of the

followi...

https://brainly.in/question/39499253

Answered by amitnrw
6

Given :  [(3^2)]^3+(\frac{2}{3})^0+3^5\times(\frac{1}{3})^4

To Find : Simplify.

Solution:

[(3^2)]^3+(\frac{2}{3})^0+3^5\times(\frac{1}{3})^4

Laws of exponents  

$\begin{align} & {{\text{a}}^{n}}\times {{a}^{-n}}=1\text{ or }{{\text{a}}^{n}}=\frac{1}{{{a}^{n}}} \\  & {{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} \\  & \frac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}} \\  & {{\left( {{a}^{m}} \right)}^{n}}={{\left( {{a}^{n}} \right)}^{m}}={{a}^{mn}} \\  & {{a}^{m}}\times {{b}^{m}}={{\left( ab \right)}^{m}} \\  & \frac{{{a}^{n}}}{{{b}^{n}}}={{\left( \frac{a}{b} \right)}^{n}} \\  & {{a}^{0}}=1 \\ \end{align}$

[(3^2)]^3+(\frac{2}{3})^0+3^5\times(\frac{1}{3})^4

=(3^6)+(\dfrac{2^0}{3^0})+3^5\times(\dfrac{1^4}{3^4})

=729+(\dfrac{1}{1})+ (\dfrac{3^5}{3^4})

=729+ 1 + 3^{5-4}

=729+ 1 + 3^1

=  729+ 1 + 3

= 733

[(3^2)]^3+(\frac{2}{3})^0+3^5\times(\frac{1}{3})^4=733

Learn More:

find the value of - 34-3(-10)Simplify the following expressions and ...

brainly.in/question/23514927

Owen simplified the expression r-8 s-5. r−8s−5 = 1 r8 ⋅ s5 = s5 r8

brainly.in/question/13444792

Similar questions