Math, asked by teju4226, 1 year ago

if 1/root alpha and 1/ roots beta are root of equation ax square + bx+1 =0 then prove that the equation x (x+b cube ) +(a cube _ 3bx )=0 has roots alpha to the power 3 upon2 , beta to the power 3 upon2​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\text{$\dfrac{1}{\sqrt{\alpha}}$ and $\dfrac{1}{\sqrt{\beta}}$ are roots of $ax^2+bx+1=0$}

\textbf{To prove:}

\text{${\alpha}^\frac{3}{2}$ and ${\beta}^\frac{3}{2}$ are roots of $\bf\,x^2+(b^3-3ab)x+a^3=0$}

\textbf{Solution:}

\text{Since $\dfrac{1}{\sqrt{\alpha}}$ and $\dfrac{1}{\sqrt{\beta}}$ are roots of $ax^2+bx+1=0$,}

\text{we have}

\dfrac{1}{\sqrt{\alpha}}+\dfrac{1}{\sqrt{\beta}}=\dfrac{-b}{a}.......(1)

\dfrac{1}{\sqrt{\alpha}}\dfrac{1}{\sqrt{\beta}}=\dfrac{1}{a}.......(2)

\implies\dfrac{1}{\sqrt{\alpha\,\beta}}=\dfrac{1}{a}

\implies\boxed{\sqrt{\alpha\,\beta}=a}

\text{From (1),}

\dfrac{\sqrt{\alpha}+\sqrt{\beta}}{\sqrt{\alpha\,\beta}}=\dfrac{-b}{a}

\dfrac{\sqrt{\alpha}+\sqrt{\beta}}{a}=\dfrac{-b}{a}

\implies\boxed{\sqrt{\alpha}+\sqrt{\beta}=-b}

\text{Now, we form a quadratic equation whose roots are}

\text{${\alpha}^\frac{3}{2}$ and ${\beta}^\frac{3}{2}$}

\textbf{Sum of the roots}

={\alpha}^\frac{3}{2}+{\beta}^\frac{3}{2}

=({\alpha}^\frac{1}{2})^3+({\beta}^\frac{1}{2})^3

=({\alpha}^\frac{1}{2}+{\beta}^\frac{1}{2})(\alpha-{\alpha}^\frac{1}{2}{\beta}^\frac{1}{2}+\beta)

=(\sqrt{\alpha}+\sqrt{\beta})(\alpha+\beta-\sqrt{\alpha\,\beta})

=(\sqrt{\alpha}+\sqrt{\beta})((\sqrt{\alpha}+\sqrt{\beta})^2-2\sqrt{\alpha\,\beta}-\sqrt{\alpha\,\beta})

=(\sqrt{\alpha}+\sqrt{\beta})((\sqrt{\alpha}+\sqrt{\beta})^2-3\sqrt{\alpha\,\beta})

=(-b)((-b)^2-3a)

=(-b)(b^2-3a)

=-b^3+3ab

\textbf{Product of the roots}

={\alpha}^\frac{3}{2}\,{\beta}^\frac{3}{2}

=({\alpha}^\frac{1}{2}\,{\beta}^\frac{1}{2})^3

=(\sqrt{\alpha}\sqrt{\beta})^3

=(\sqrt{\alpha\,\beta})^3

=a^3

\textbf{The required quadratic equation is}

x^2-(-b^3+3ab)x+a^3=0

\boxed{\bf\,x^2+(b^3-3ab)x+a^3=0}

Find more:

The equation whose roots are multiplied by 3 of those of 2x^2 + 3x – 1=0 is​

https://brainly.in/question/21772616

If alpha and beta are the roots of the equation x minus A into x minus b + c equal to zero then the roots of the equation x minus Alpha into x minus beta equal to c are

https://brainly.in/question/20912304

Similar questions