if 1+sin^2 theta=3 sin theta cos theta then prove that tan theta=1 or 1/2
Answers
Answered by
1177
1+sin^2 theta=3 sin theta cos theta (we know that sin^2 theta + cos^2 theta =1)
= ( sin^2 theta + cos^2 theta ) + sin ^2 theta = 3 sin theta cos theta
= sin^2 theta + cos^2 theta + sin ^2 theta = 3 sin theta cos theta
= cos^2 theta + 2 sin^2 theta = 3 sin theta cos theta
On dividing by cos^2 theta, we get
= 1 + 2 tan^2 theta = 3 tan theta
Let tan theta = b
2b^2 - 3b + 1 = 0
= (2b-1)(b-1) = 0
b = 1 or 1/2
So, tan theta = 1 or 1/2.
Hope this helps!
= ( sin^2 theta + cos^2 theta ) + sin ^2 theta = 3 sin theta cos theta
= sin^2 theta + cos^2 theta + sin ^2 theta = 3 sin theta cos theta
= cos^2 theta + 2 sin^2 theta = 3 sin theta cos theta
On dividing by cos^2 theta, we get
= 1 + 2 tan^2 theta = 3 tan theta
Let tan theta = b
2b^2 - 3b + 1 = 0
= (2b-1)(b-1) = 0
b = 1 or 1/2
So, tan theta = 1 or 1/2.
Hope this helps!
Answered by
506
Answer:
Given: 1 + Sin²Ф = 3 SinФ. CosФ
Using the formula: Sin²Ф + Cos²Ф = 1, we get,
⇒ ( Sin²Ф + Cos²Ф ) + Sin²Ф = 3 SinФ. CosФ
⇒ Cos²Ф + 2Sin²Ф = 3 SinФ. CosФ
Dividing both sides by Cos²Ф, we get,
⇒ 1 + 2 ( Sin²Ф / Cos²Ф ) = 3 SinФ. Cos²Ф / CosФ
Cos²Ф / CosФ will become 1 / CosФ which on multiplied by SinФ becomes SinФ / CosФ which is TanФ.
⇒ 1 + 2 Tan²Ф = 3 TanФ
Transposing 3 TanФ this side we get,
⇒ 2 Tan²Ф - 3 TanФ + 1 = 0
For sake of simplicity, let us take TanФ as 'x'
⇒ 2x² - 3x + 1 = 0
Solving the equation we get,
⇒ 2x² - 2x - x + 1 = 0
⇒ 2x ( x - 1 ) -1 ( x - 1 ) = 0
⇒ ( 2x - 1 ) ( x - 1 ) = 0
⇒ 2x = 1 , x = 1 / 2
⇒ x = 1
Hence the values of x are ( 1/2, 1 )
Hence Tan Ф values are ( 1/2, 1 )
This is the required values.
Hence Proved !!
Similar questions