Math, asked by KnsKrishna, 1 year ago

cos48 degree ×cos12 degree

Answers

Answered by HappiestWriter012
73
cos48.cos12

= 1/2 ( 2cos48.cos12)

= 1/2 ( cos(48+12) + cos ( 48-12)

= 1/2 ( cos60.cos36)

= 1/2 ( 1/2. √5+1/4)

=(√5+1 )/16
Answered by pinquancaro
52

Answer:

\cos (48^\circ) \cos (12^\circ)=\frac{3+\sqrt5}{8}

Step-by-step explanation:

To find : Solve the expression \cos (48^\circ)\times \cos (12^\circ)

Solution :

Expression \cos (48^\circ)\times \cos (12^\circ)

Applying trigonometric identities,

\cos A\cos B=\frac{1}{2}[\cos(A+B)+\cos(A-B)]

Substitute, A=48 and B = 12

\cos (48^\circ) \cos (12^\circ)=\frac{1}{2}[\cos(48+12)+\cos(48-12)]

\cos (48^\circ) \cos (12^\circ)=\frac{1}{2}[\cos(60)+\cos(36)]

Substitute, \cos(60)=\frac{1}{2}\ , \cos (36)=\frac{\sqrt5+1}{4}

\cos (48^\circ) \cos (12^\circ)=\frac{1}{2}[\frac{1}{2}+\frac{\sqrt5+1}{4}]

\cos (48^\circ) \cos (12^\circ)=\frac{1}{4}+\frac{\sqrt5+1}{8}

\cos (48^\circ) \cos (12^\circ)=\frac{2+\sqrt5+1}{8}

\cos (48^\circ) \cos (12^\circ)=\frac{3+\sqrt5}{8}

Therefore, \cos (48^\circ) \cos (12^\circ)=\frac{3+\sqrt5}{8}

Similar questions