If 1 + sin^2A = 3 sin A cos A, then prove that tan A = 1 or tan A = 1/2
Attachments:
Answers
Answered by
0
...
1 + tan²A + tan²A = 3tanA
... (sec²A = 1 + tan²A)
2tan²A - 3tanA + 1 = 0
2tan²A - 2tanA - tanA + 1 = 0
2tanA(tanA - 1) - 1(tanA - 1) = 0
(2tanA - 1)(tanA - 1) = 0
2tanA - 1 = 0 or tanA - 1 = 0
tanA = ½ or tanA = 1
... Hence Proved!
Similar questions