Math, asked by hvishwanathh, 10 months ago

if 1+sin^2alpha=3sin alpha cos alpha then show that the value of tan alpha=1 or 1/2​

Answers

Answered by mansisingla21
2

Answer:

this question is very important which is send by me..above

Attachments:
Answered by harendrachoubay
5

\tan \alpha=1 or \dfrac{1}{2}, proved.

Step-by-step explanation:

We have,

1+\sin^2\alpha=3\sin \alpha \cos \alpha

To prove that,  \tan \alpha=1 or \dfrac{1}{2}

1+\sin^2\alpha=3\sin \alpha \cos \alpha

Dividing both sides \cos^2 \alpha, we get

\dfrac{1}{\cos^2 \alpha} +\dfrac{\sin^2\alpha}{\cos^2\alpha} =\dfrac{3\sin \alpha \cos \alpha}{\cos^2 \alpha}

\sec^2 \alpha+\tan^2 \alpha=3\tan \alpha

1+\tan^2 \alpha+\tan^2 \alpha=3\tan \alpha

2\tan^2 \alpha-3\tan \alpha+1=0

By factorisation method,

2\tan^2 \alpha-2\tan \alpha-\tan \alpha+1=0

2\tan\alpha(\tan\alpha-1)-1(\tan\alpha-1)=0

(\tan\alpha-1)(2\tan\alpha-1)=0

\tan\alpha-1=0 or 2\tan\alpha-1=0

\tan\alpha-1=0

\tan\alpha=1

2\tan\alpha-1=0

\tan\alpha=\dfrac{1}{2}

Hence, \tan \alpha=1 or \dfrac{1}{2}, proved.

Similar questions