Math, asked by uttusharma789, 9 months ago

If (1 – sin A) (1- sin B) (1- sin C) = (1 + sin A) (1+ sin B) (1+ sin C), then prove that each side is equal to cos A cos B cos C.

Answers

Answered by pulakmath007
8

\huge\boxed{\underline{\underline{\green{\tt Solution}}}} </p><p>

Let

k = (1 – sin A) (1- sin B) (1- sin C) = (1 + sin A) (1+ sin B) (1+ sin C)

Now

k \times k = (1 – sin A) (1- sin B) (1- sin C)  \times  (1 + sin A) (1+ sin B) (1+ sin C)

 \implies \:  {k}^{2}  = (1 –  {sin}^{2} A) (1-  {sin}^{2}  B) (1-  {sin}^{2}  C)

 \implies \:  {k}^{2}  =  {cos}^{2}  A \:   {cos \: }^{2} B \:  {cos}^{2}  C

 \implies \: k \:  =  \pm \: cos A \: cos B \: cos C)

Hence proved

</p><p></p><p>\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}

Similar questions