if (1+sin x/cos x)+(cos x/1+sin x)=4, find the value of x
Answers
Answered by
1
hope this helps....
thanks : D✌✌✌✌
thanks : D✌✌✌✌
Attachments:
interms2004:
tyq
Answered by
1
(1+sinx/cosx) + (cosx/(1+sinx))
= (1+sinx/cosx) + (cosx) (1-sinx) /(1-sin2x)
= (1+sinx/cosx) + (coax) (1-sinx) /(cos2x)
=(1+sinx/cosx) + (cosx-sinx*cosx)/cos2x
= (cosx + sinxcosx + cosx-sinxcosx) /cos2x
= (2cosx) /cos2x
= 2/cosx
hence ::
2/cosx = 4
2secx = 4
secx=2
then
sec(+-pi/3) = 2
and in the interval
0<= X <= 2pi
X = pi/3_____answer
X = 2pi - pi/3 = 5pi/3_______answer
hope it will help you
= (1+sinx/cosx) + (cosx) (1-sinx) /(1-sin2x)
= (1+sinx/cosx) + (coax) (1-sinx) /(cos2x)
=(1+sinx/cosx) + (cosx-sinx*cosx)/cos2x
= (cosx + sinxcosx + cosx-sinxcosx) /cos2x
= (2cosx) /cos2x
= 2/cosx
hence ::
2/cosx = 4
2secx = 4
secx=2
then
sec(+-pi/3) = 2
and in the interval
0<= X <= 2pi
X = pi/3_____answer
X = 2pi - pi/3 = 5pi/3_______answer
hope it will help you
Similar questions