if 1+sin²theta=3sintheta cis theta, then prove that tan theta=1or 1/2
Answers
★Given :
- 1 + Sin²θ = 3 Sinθ Cosθ
★To prove :
- Tan θ = ( 1/2, 1 )
★Proof :
Given,
1 + Sin²θ = 3 Sinθ Cosθ
Using the formula:
✦Sin²θ + Cos²θ= 1
Substituting in the given equation,
→( Sin²θ + Cos²θ ) + Sin²θ = 3 Sinθ. Cosθ
→Cos²θ + 2Sin²θ= 3 Sinθ. Cosθ
Dividing both sides by Cos²θ,
→(Cos²θ/ Cos²θ)+ 2 ( Sin²θ/Cos²θ ) = 3 Sinθ. Cos²θ/Cosθ
→1 + 2 ( Sin²θ/Cos²θ ) = 3 Sinθ. Cos²θ / Cosθ
→1 + 2 ( Sin²θ/Cos²θ ) = 3 Sinθ/ Cosθ
We know,
[Tanθ=sinθ/cosθ]
→1 + 2 Tan²θ = 3 Tanθ
→2(Tanθ)² - 3Tanθ + 1 = 0
Solving the equation ,
→2Tanθ² - 2 Tanθ- Tanθ + 1 = 0
→2Tanθ ( Tanθ - 1 ) -1 ( Tanθ - 1 ) = 0
→( 2Tanθ - 1 ) ( Tanθ - 1 ) = 0
→2 Tanθ = 1 , Tanθ = 1
→Tanθ = 1/2 , 1
Hence the values of Tanθ are ( 1/2, 1 )
Hence Proved !
_________________
Answer:
★Given :
1 + Sin²θ = 3 Sinθ Cosθ
★To prove :
Tan θ = ( 1/2, 1 )
★Proof :
Given,
1 + Sin²θ = 3 Sinθ Cosθ
Using the formula:
✦Sin²θ + Cos²θ= 1
Substituting in the given equation,
→( Sin²θ + Cos²θ ) + Sin²θ = 3 Sinθ. Cosθ
→Cos²θ + 2Sin²θ= 3 Sinθ. Cosθ
Dividing both sides by Cos²θ,
→(Cos²θ/ Cos²θ)+ 2 ( Sin²θ/Cos²θ ) = 3 Sinθ. Cos²θ/Cosθ
→1 + 2 ( Sin²θ/Cos²θ ) = 3 Sinθ. Cos²θ / Cosθ
→1 + 2 ( Sin²θ/Cos²θ ) = 3 Sinθ/ Cosθ
We know,
[Tanθ=sinθ/cosθ]
→1 + 2 Tan²θ = 3 Tanθ
→2(Tanθ)² - 3Tanθ + 1 = 0
Solving the equation ,
→2Tanθ² - 2 Tanθ- Tanθ + 1 = 0
→2Tanθ ( Tanθ - 1 ) -1 ( Tanθ - 1 ) = 0
→( 2Tanθ - 1 ) ( Tanθ - 1 ) = 0
→2 Tanθ = 1 , Tanθ = 1
→Tanθ = 1/2 , 1
Hence the values of Tanθ are ( 1/2, 1 )
Hence Proved !
Step-by-step explanation:
Hope it's helpful to you :) :)