if (1+sina)(1+cosa)=5/4 then the value of (1-sina)(1-cosa) is equal to
Answers
Answered by
2
Hi ,
( 1 + sinA ) ( 1 + cosA ) = 5/4
Multiply both sides with
( 1 - sinA ) ( 1 - cosA )
( 1 - sin²A ) ( 1 - cos² A ) = 5/4 ( 1-sinA)(1-cosA)
Cos² A sin²A = 5/4 ( 1-sina) ( 1- cosA)
Therefore ,
( 1-sinA) (1 - cosA ) = 4/5(cos²A sin² A)
I hope this helps you.
:)
( 1 + sinA ) ( 1 + cosA ) = 5/4
Multiply both sides with
( 1 - sinA ) ( 1 - cosA )
( 1 - sin²A ) ( 1 - cos² A ) = 5/4 ( 1-sinA)(1-cosA)
Cos² A sin²A = 5/4 ( 1-sina) ( 1- cosA)
Therefore ,
( 1-sinA) (1 - cosA ) = 4/5(cos²A sin² A)
I hope this helps you.
:)
Answered by
5
✭ (1 + sinα)(1 + cosα) = \sf \dfrac{5}{4}
1 - sin²θ = cos²θ
1 - cos²θ = sin²θ
(a + b)(a - b) = a² - b²
❍ On multiplying both sides by (1 - sinα)(1 - cosα)
➳[(1 + sinα)(1 + cosα)}{(1 - sinα)(1 - cosα)]= × (1 - sinα)(1 - cosα)
➳ (1 - sin²α)(1 - cos²α) = × (1 - sinα)(1 - cosα)
➳ cos²α * sin²α = × (1 - sinα)(1 - cosα)
➳ (1 - sinα)(1 - cosα) = ( cos^α sin^2α )
Similar questions