if 1,w,w^2 are the cube roots of unity then prove the following (1+w)(1+w^2)(1+w^7)(1+w^8)=1
Answers
Answered by
3
Step-by-step explanation:
(1+w)(1+w^8)(1+w^2)(1+w^7)
=(1+w){1+(w^3)^2.w^2}(1+w^2). {1+(w^3)^2.w}
=(1+w)(1+w^2)(1+w^2)(1+w)
=(1+w)^2(1+w^2)^2
={(1+w)(1+w^2)}^2
={1+w^2+w+w^3}^2
=(1+w+w^2+1)^2 [since,1+w+w^2=0]
=(2-1)^2
=1²
=1
Similar questions
English,
6 months ago
Math,
6 months ago
Social Sciences,
6 months ago
English,
11 months ago
Science,
1 year ago