Math, asked by Hasib7107, 1 year ago

If 10^0.3010 = 2, then find the value of log0.125 (125) ?

Answers

Answered by HappiestWriter012
21
Given,
10^0.3010 = 2

So,
 log_{10}(2)  = 0.3010
Now,

 log_{0.125}(125)  =   \frac{ log(125) }{ log(0.125) }  \\  =  \frac{  log( {5}^{3} )  }{ log( {0.5}^{3} ) }  \\  =  \frac{3}{3 }  \frac{ log(5) }{ log( \frac{1}{2} ) }  \\  =  \frac{ log(5) }{ log(1)  -  log(2) }  \\  =  -  \frac{ log(5) }{ log(2) }  \\  =  - 2.321

Hope helped!
Answered by abhi178
6
\bold{10^{0.3010}=2}
               take log base 10 both sides,
\bold{log_{10}{10^{0.3010}}=log_{10}2}\\\\\bold{0.3010log_{10}10=log_{10}2}\\\\\bold{0.3010=log_{10}2}

now, given,
 
\bold{log_{0.125}125}=\bold{log_{\frac{125}{1000}}125}\\\\=\bold{log_{0.5}5}=\bold{\frac{1}{log_50.5}}=\bold{\frac{1}{-log_52}}\\\\=\bold{\frac{-log_{10}5}{log_{10}2}}
 = -2.321  [ log5 = 0.6989 and log2 = 0.3010]

Similar questions