if 10^21 molecules are removed from 200 mg of co2 then the number of moles of co2 left are
Answers
Answer:
the number of molecules left from co2 are 170^13
Answer:
molecular mass of N₂O = 44
weight of N₂O = 200mg = 0.2g
moles of N₂O present = 0.2/44 = 4.55×10^(-3)
Let moles of N₂O removed = y
moles of N₂O remained = 2.89×10^(-3)
Thus 4.55×10^(-3) - y = 2.89×10^(-3)
⇒ -y = 2.89×10^(-3) - 4.55×10^(-3)
⇒ y = 4.55×10^(-3) - 2.89×10^(-3)
⇒ y = 1.66×10^(-3) moles
No. of molecules in 1 mole = 6.022×10^(23)
No. of molecules in y moles = y×6.022×10^(23) = 1.66×10^(-3)×6.022×10^(23) =9.97×10^(20)
Thus x = 9.97×10^(20) molecules
molecular mass of N₂O = 44
weight of N₂O = 200mg = 0.2g
moles of N₂O present = 0.2/44 = 4.55×10^(-3)
Let moles of N₂O removed = y
moles of N₂O remained = 2.89×10^(-3)
Thus 4.55×10^(-3) - y = 2.89×10^(-3)
⇒ -y = 2.89×10^(-3) - 4.55×10^(-3)
⇒ y = 4.55×10^(-3) - 2.89×10^(-3)
⇒ y = 1.66×10^(-3) moles
No. of molecules in 1 mole = 6.022×10^(23)
No. of molecules in y moles = y×6.022×10^(23) = 1.66×10^(-3)×6.022×10^(23) =9.97×10^(20)
Thus x = 9.97×10^(20) molecules
molecular mass of N₂O = 44
weight of N₂O = 200mg = 0.2g
moles of N₂O present = 0.2/44 = 4.55×10^(-3)
Let moles of N₂O removed = y
moles of N₂O remained = 2.89×10^(-3)
Thus 4.55×10^(-3) - y = 2.89×10^(-3)
⇒ -y = 2.89×10^(-3) - 4.55×10^(-3)
⇒ y = 4.55×10^(-3) - 2.89×10^(-3)
⇒ y = 1.66×10^(-3) moles
No. of molecules in 1 mole = 6.022×10^(23)
No. of molecules in y moles = y×6.022×10^(23) = 1.66×10^(-3)×6.022×10^(23) =9.97×10^(20)
Thus x = 9.97×10^(20) molecules
Explanation: