if 10 sin⁴ alpha+ 15 cos⁴alpha = 6 , find the value of 27 cosec^6 alpha + 8 sec ^6 alpha.
Answers
Answered by
12
We have,
10 sin⁴ alpha + 15 cos⁴ alpha = 6.(1)²
10 sin⁴ alpha + 15 cos⁴ alpha = 6 (sin²alpha + cos² alpha)²
[1 = sin² theta + cos² theta ]
Dividing both sides by cos⁴ alpha.
10 sin⁴alpha/cos⁴ alpha + 15 cos⁴alpha /cos⁴ alpha = 6 ( sin²aplha/cos²alpha + cos²alpha/ cos²alpha)⁴
10 tan⁴alpha +15 = 6 (tan²alpha + 1)²
10 tan⁴alpha + 15 = 6(tan⁴alpha +1+2tan²alpha)
[(a+b)²= a²+b² +2ab]
10tan⁴alpha + 15 = 6 tan⁴alpha +6 +12tan²alpha.
4tan⁴alpha -12 tan²alpha+9 = 0
(2tan²alpha -3)²= 0
2tan²alpha -3 = 0
tan²alpha = 3/2. So,
cot²alpha = 2/3
Now , 27( cosec²alpha)³ +8( sec²alpha)³
27 ( 1+cot²alpha)³ + 8 (1+tan²alpha)³
27+(1+2/3)³+8(1+3/2)³
27×125/27+8×125/8
125 +125
250
Answered by
20
SOLUTION
Refer to the attachment
hope it helps ☺️
Attachments:
Similar questions