Math, asked by CapyltainNJ75881, 11 months ago

If 10th term of an A.P. is 52 and 17th term is 20 more than the 13th term, find the A.P.

Answers

Answered by umiko28
25

Answer:

\huge\underline{ \underline{ \red{your \: \: answer}}}

Step-by-step explanation:

 \bf\pink{ \mapsto \: a + 9d = 52 -  -  -  -  - (1)} \\  \\ \bf\blue{ \mapsto \: given that -&gt;  \: a17 = a13 + 20} \\  \\ \bf\purple{ \mapsto \: a + 16d = a + 12d = 20} \\  \\ \bf\green{ \mapsto a + 16d - a - 12d = 20} \\  \\ \bf\orange{ \mapsto \: 4d = 20 \:  =  &gt; d = 5} \\  \\ \bf\pink{ \mapsto \: value \: of \: d \: put \: in \: (1)} \\  \\ \bf\red{ \mapsto \: a + 9 \times5 = 52 } \\ \\ \bf\blue{ \mapsto \: a + 45 = 52} \\  \\ \bf\green{ \mapsto \:a = 52 - 45} \\  \\ \bf\orange{ \mapsto \:a = 7} \\  \\ \bf\green{ \underline{ \mapsto \:a = 7 \: and \: d = 5}} \\  \\ \bf\red{ \:Therefore \:  the \:  AP  \: is \mapsto</p><p>7, 12, 17,22.....} \\  \\ \large\boxed{ \frak{ \fcolorbox{red}{yellow}{hope \: it \: help \: you}}}

Similar questions