Math, asked by akankot9108, 10 months ago

If 1125=3^m*5^n,find m and n

Answers

Answered by waqarsd
1

Answer:

m=2  n=3

Step-by-step explanation:

1125

\large{1125=3\times\frac{1125}{3}}\\\\\large{1125=3\times375}\\\\\large{1125=3^2\times\frac{375}{3}}\\\\\large{1125=3^2\times125}\\\\\boxed{125=5^3}\\\\\large{=>1125=3^2\times5^3}\\\\{\large{\boxed{{Hope \;\;it \;\;Helps}}}}

Answered by PADMINI
0

Given :

1125 =   {3}^{m}  \:  {5}^{n}

To find :

find the value of m and n

Solution :

LCM of 1125 :

 \begin{array}{r | I} 5 & 1125 \\ \cline{2-2} 5 & 225 \\ \cline{2-2} 5 & 45 \\ \cline{2-2} 3 & 9 \\ \cline{2-2} 3 & 3 \\ \cline{2-2} & 1 \end{array}

LCM = 5 x 5 x 5 x 3 x 3

 =  >  {5}^{3}  \:  {3}^{2}

 =  > 1125 =  {3}^{2}  \:  {5}^{3}

On Comparison, we get :

 =  >   {3}^{m}  \:  {5}^{n}  =  {3}^{2}  \:  {5}^{3}

 = > m = 2 \: and \: n = 3

Hence, the value of m=2 and n =3.

Similar questions