Math, asked by sania08, 5 months ago

If 125 identical metallic balls are melted to form 8 bigger balls, each of same size, then what is the ratio of the surface areas of a bigger ball to that of a smaller ball​?

a) 4:3
b) 5:2
c) 16:9
d) 25:4​

Answers

Answered by bhumi9794
2

Answer:

Let , radius of spherical ball be R,

And radius of 8 identical balls be r,

According to question,

Volume of larger sphere =8×volume of 8 identical balls

34πR 3 =8× 34πr 3⟹R 3 =8×r 3

Hence, R=2r

Answered by MagicalBeast
7

Let :

  • Radius of small ball = x
  • Radius of bigger ball = y

Given :

125 small ball are melted to form 8 big ball

To find :

Ratio of surface area of bigger ball to smaller ball

Formula used :

  • Volume of sphere = (4/3)πr³
  • Surface area of sphere = 4πr²

Solution :

125 small ball are melted to form 8 big ball

Therefore volume of 125 smaller ball = Volume of 8 bigger ball

\sf \implies \: 125 \times  \bigg( \dfrac{4}{3}  \times \pi \times  {r}^{3} \:  \bigg)  =  \:  8 \times  \bigg(\dfrac{4}{3}  \times \pi \times  {R}^{3}  \bigg) \\  \\ \sf \implies \: \bigg( \dfrac{ {r}^{3} }{ {R}^{3}}  \bigg)  \: =  \:  \dfrac{8}{125}  \\  \\ \sf \implies \: \bigg( \dfrac{ {r} }{ {R}}  \bigg)^{3}  \: = \:  \dfrac{ {2}^{ 3 } }{ {5}^{3} }  \\  \\  \sf \implies \: \bigg( \dfrac{ {r} }{ {R}}  \bigg)^{3}  \: = \:  \bigg( \dfrac{ {2} }{ {5}} \bigg)^{3}  \\  \\  \sf \: take \: cube \: root \: on \: both \: side \\  \sf \implies \: \dfrac{ {r} }{ {R}}   \: = \:  \dfrac{ {2} }{ {5}}

_______________________________________________

Now , surface area of sphere = 4πr²

➝ Surface area of bigger ball : Surface area of smaller ball = 4π (R²) : 4π r²

 \sf \implies \:  \dfrac{Surface \:  area \:  of  \: bigger  \: ball  }{Surface \:  area \:  of  \: smaller  \: ball } \:  =  \:  \dfrac{4π R^{2} }{4\pi \:  {r}^{2} }  \\  \\ \sf \implies \:  \dfrac{Surface \:  area \:  of  \: bigger  \: ball  }{Surface \:  area \:  of  \: smaller  \: ball } \:  =  \: \:  \dfrac{R^{2}}{ {r}^{2} }  \\  \\ \sf \implies \:  \dfrac{Surface \:  area \:  of  \: bigger  \: ball  }{Surface \:  area \:  of  \: smaller  \: ball } \:  =  \:  \bigg(\dfrac{R}{ {r}} \bigg)^{2} \\  \\ \sf \: put \: value \: of \:  \dfrac{R}{r} \\\sf \implies \:  \dfrac{Surface \:  area \:  of  \: bigger  \: ball  }{Surface \:  area \:  of  \: smaller  \: ball } \:  =  \:  \bigg(\dfrac{5}{ {2}} \bigg)^{2} \\  \\    \sf \implies \:  \dfrac{Surface \:  area \:  of  \: bigger  \: ball  }{Surface \:  area \:  of  \: smaller  \: ball } \:  =  \:   \dfrac{ {5}^{2} }{ {2}^{2} }  \\  \\  \sf \implies \:  \dfrac{Surface \:  area \:  of  \: bigger  \: ball  }{Surface \:  area \:  of  \: smaller  \: ball } \:  =   \dfrac{25}{4}

_______________________________________________

ANSWER :

Option d) 25:4

Similar questions