Math, asked by BiprojitBhattacharya, 9 months ago

If ✓(13-a√10) = √3+√5 then a=?​

Answers

Answered by Anonymous
1

Answer:

 \sqrt{13 - a \sqrt{10} }  =  \sqrt{3 }  +  \sqrt{5}  \\  \\  \\  =  >  \sqrt{13}  - 10 \sqrt{a}  =  \sqrt{3}  +  \sqrt{5}  \\  \\  \\  =  >   \sqrt{13}  -  \sqrt{3}  -  \sqrt{5}  = 10 \sqrt{a}  \\  \\  \\  \\  \\  =  > 3.60 - 1.732 - 2.23 = 10 \sqrt{a}  \\  \\  \\  =  > 3.605 - 3.96 = 10 \sqrt{a}  \\  \\  \\  =  >  - 0.3 = 10 \sqrt{a}  \\  \\  \\  \\  =  >  \sqrt{a}  =  \frac{ - 0.3}{10}  \\  \\  =  >  \sqrt{a}  =  \frac{ - 3}{100}  \\  \\  =  > a =  -  \frac{ \sqrt{3 } }{10}

please mark me brainlist ✔️

Answered by priyankad189owcwwe
0

Answer:

\ a = \frac{(\sqrt{5}-2*\sqrt{3}  )}\sqrt{2}} \\

Step-by-step explanation:

\sqrt{13-a\sqrt{10} } =\sqrt{3} -\sqrt{5} \\

\ 13-a\sqrt{10} } =(\sqrt{3} -\sqrt{5})^{2}  \\

using (a+b)^{2} =a^{2} +b^{2}  +2ab

\ 13-a\sqrt{10} } =( 3 + 5 +2*\sqrt{3} *\sqrt{5}) \\

\ -a\sqrt{10} } = -5 +2*\sqrt{3} *\sqrt{5} \\

\ a = \frac{5 -2*\sqrt{3} *\sqrt{5} }\sqrt{10}} \\

\ a = \frac{(\sqrt{5}*\sqrt{5}-2*\sqrt{3} *\sqrt{5} )}\sqrt{5*2}} \\

\ a = \frac{(\sqrt{5}-2*\sqrt{3}  )}\sqrt{2}} \\

Similar questions