Math, asked by helpatworldofspace, 4 days ago

If 13 sinθ = 5 , find the values of tanθ and cosθ.
pls answer this​

Answers

Answered by anindyaadhikari13
3

Solution:

Given That:-

\rm\longrightarrow 13\sin\theta=5

\rm\longrightarrow \sin\theta=\dfrac{5}{13}

\rm\longrightarrow \dfrac{Height}{Hypotenuse}=\dfrac{5}{13}

Let us assume that:-

\rm\longrightarrow Height=5k

\rm\longrightarrow Hypotenuse=12k

Where k is a real number, k ≠ 0.

We know that:-

\rm\longrightarrow Hypotenuse^{2}=Height^{2}+Base^{2}

\rm\longrightarrow Base^{2}=Hypotenuse^{2}-Height^{2}

\rm\longrightarrow Base^{2}=(13k)^{2}-(5k)^{2}

\rm\longrightarrow Base^{2}=169k^{2}-25k^{2}

\rm\longrightarrow Base^{2}=144k^{2}

\rm\longrightarrow Base=12k

Therefore:-

\rm\longrightarrow \cos\theta=\dfrac{Base}{Hypotenuse}=\dfrac{12k}{13k}=\dfrac{12}{13}

\rm\longrightarrow \tan\theta=\dfrac{Height}{Base}=\dfrac{5k}{12k}=\dfrac{5}{12}

Which is our required answer.

Additional Information:

1. Relationship between sides and T-Ratios.

  • sin θ = Height/Hypotenuse
  • cos θ = Base/Hypotenuse
  • tan θ = Height/Base
  • cot θ = Base/Height
  • sec θ = Hypotenuse/Base
  • cosec θ = Hypotenuse/Height

2. Square formulae.

  • sin²θ + cos²θ = 1
  • cosec²θ - cot²θ = 1
  • sec²θ - tan²θ = 1

3. Reciprocal Relationship.

  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ

4. Cofunction identities.

  • sin(90° - θ) = cos θ
  • cos(90° - θ) = sin θ
  • cosec(90° - θ) = sec θ
  • sec(90° - θ) = cosec θ
  • tan(90° - θ) = cot θ
  • cot(90° - θ) = tan θ

5. Even odd identities.

  • sin -θ = -sin θ
  • cos -θ = cos θ
  • tan -θ = -tan θ
Attachments:

anindyaadhikari13: Thanks for the brainliest ^_^
Similar questions