Math, asked by karkarshreya7, 7 months ago

If 15 workers can build a wall in 48 hours, how many workers will be required to do the same work

in 30 hours?​

Answers

Answered by TheGeniusChild
14

Answer:

HOPE IT HELPED YOU HOPE IT HELPED YOU

PLEASE MARK AS BRAINLIEST

Attachments:
Answered by manishavedant26
1

Answer:

Let the number of workers building the wall be = ‘n’

The time required be =‘t’

Since, the number of workers varies inversely with the time required to build the wall.

n ∝ 1/t

n = k × (1/t) where, k is the constant of variation

∴ n × t = k …(i)

15 workers can build a wall in 48 hours,

when n = 15, t = 48

Substitute the value of n = 15 and t = 48 in (i), we get

n × t = k

15 × 48 = k

k = 720

Now, substitute the value of k = 720 back in (i), we get

n × t = k

∴ n × t = 720 … (ii)

This is the equation of variation.

Now, let us find number of workers required to do the same work in 30 hours.

When t = 30, n =?

Substitute the value of t = 30 in (ii), we get

n × t = 720

n × 30 = 720

n = 72030

n = 24

∴ 24 workers are required to build the wall in 30 hours.

Similar questions