Math, asked by ammy123, 11 months ago

If 16×8^(n+2)=2^m, then m is equal to
Step by step explanation

Answers

Answered by has42000
1

Answer:

Step-by-step explanation:

       

      16 * 8^{n+2} = 2^{m}

     2^{4} * 2^{3(n+2)}  = 2^{m}

     2^{4 + 3n + 6}  = 2^{m}

    2^{3n + 10}  = 2^{m}

   now base are same so,

   3n + 10 = m

  i.g.     m = 3n + 10

Answered by raushan6198
1

Step-by-step explanation:

16 \times  {8}^{ n+ 2}  =  {2}^{m}  \\  =  >  {2}^{4}  \times  { ({2}^{3} })^{ n+ 2}  =  {2}^{m}  \\  =  >  {2}^{4}  \times  {2}^{3n + 6}  =  {2}^{m}  \\  =  >  {2}^{4 + 3n + 6}  =  {2}^{m}  \\  =  > 4 + 3n + 6 = m \\  =  > 10 + 3n = m \\  =  > m = 3n + 10 \:  \: ans

Similar questions